Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A novel design, analysis and 3D printing of Ti-6Al-4V alloy bio-inspired porous femoral stem

Full metadata record
DC Field Value Language
dc.contributor.authorMehboob, H.-
dc.contributor.authorTarlochan, F.-
dc.contributor.authorMehboob, A.-
dc.contributor.authorChang, S.-H.-
dc.contributor.authorRamesh, S.-
dc.contributor.authorHarun, W.S.W.-
dc.contributor.authorKadirgama, K.-
dc.date.accessioned2022-01-13T06:42:25Z-
dc.date.available2022-01-13T06:42:25Z-
dc.date.issued2020-08-
dc.identifier.issn0957-4530-
dc.identifier.issn1573-4838-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/53490-
dc.description.abstractThe current study is proposing a design envelope for porous Ti-6Al-4V alloy femoral stems to survive under fatigue loads. Numerical computational analysis of these stems with a body-centered-cube (BCC) structure is conducted in ABAQUS. Femoral stems without shell and with various outer dense shell thicknesses (0.5, 1.0, 1.5, and 2 mm) and inner cores (porosities of 90, 77, 63, 47, 30, and 18%) are analyzed. A design space (envelope) is derived by using stem stiffnesses close to that of the femur bone, maximum fatigue stresses of 0.3σys in the porous part, and endurance limits of the dense part of the stems. The Soderberg approach is successfully employed to compute the factor of safety Nf > 1.1. Fully porous stems without dense shells are concluded to fail under fatigue load. It is thus safe to use the porous stems with a shell thickness of 1.5 and 2 mm for all porosities (18–90%), 1 mm shell with 18 and 30% porosities, and 0.5 mm shell with 18% porosity. The reduction in stress shielding was achieved by 28%. Porous stems incorporated BCC structures with dense shells and beads were successfully printed. [Figure not available: see fulltext.] © 2020, The Author(s).-
dc.language영어-
dc.language.isoENG-
dc.publisherSpringer-
dc.titleA novel design, analysis and 3D printing of Ti-6Al-4V alloy bio-inspired porous femoral stem-
dc.typeArticle-
dc.identifier.doi10.1007/s10856-020-06420-7-
dc.identifier.bibliographicCitationJournal of Materials Science: Materials in Medicine, v.31, no.9-
dc.description.isOpenAccessN-
dc.identifier.wosid000565547200002-
dc.identifier.scopusid2-s2.0-85089571657-
dc.citation.number9-
dc.citation.titleJournal of Materials Science: Materials in Medicine-
dc.citation.volume31-
dc.type.docTypeArticle-
dc.publisher.location네델란드-
dc.subject.keywordPlus3D printers-
dc.subject.keywordPlusBiomimetics-
dc.subject.keywordPlusBone-
dc.subject.keywordPlusCrystal structure-
dc.subject.keywordPlusFatigue of materials-
dc.subject.keywordPlusPorosity-
dc.subject.keywordPlusSafety factor-
dc.subject.keywordPlusShells (structures)-
dc.subject.keywordPlusTernary alloys-
dc.subject.keywordPlusTitanium alloys-
dc.subject.keywordPlusVanadium alloys-
dc.subject.keywordPlusBody-centered cubes (bcc)-
dc.subject.keywordPlusComputational analysis-
dc.subject.keywordPlusEndurance limit-
dc.subject.keywordPlusFactor of safety-
dc.subject.keywordPlusFatigue stress-
dc.subject.keywordPlusShell thickness-
dc.subject.keywordPlusStress shielding-
dc.subject.keywordPlusTi-6Al-4V alloy-
dc.subject.keywordPlusAluminum alloys-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Biomaterials-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Chang, Seung-Hwan photo

Chang, Seung-Hwan
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE