Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Moisture dependence of electrical resistivity in under-percolated cement-based composites with multi-walled carbon nanotubesopen access

Authors
Hong, G.Choi, S.Yoo, D.-Y.Oh, T.Song, Y.Yeon, J.H.
Issue Date
Jan-2022
Publisher
Elsevier Editora Ltda
Keywords
Carbon nanotubes; Cement-based composites; Electrical resistivity; Internal relative humidity; Percolation threshold; Self-sensing
Citation
Journal of Materials Research and Technology, v.16, pp 47 - 58
Pages
12
Journal Title
Journal of Materials Research and Technology
Volume
16
Start Page
47
End Page
58
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/54811
DOI
10.1016/j.jmrt.2021.11.151
ISSN
2238-7854
2214-0697
Abstract
Cement-based piezoresistive composites have attracted significant attention as smart construction materials for embedding self-sensing capability in concrete infrastructure. Although a number of studies have been conducted using multi-walled carbon nanotubes (MWCNTs) as a functional filler for self-sensing cement-based composites, studies addressing the influence of the internal moisture state on the electrical properties are relatively scant. In this study, we aim to experimentally investigate the effect of internal moisture state on the electrical resistivity of cement-based composites containing MWCNTs as an electrically conductive medium to raise a need for calibration of self-sensing data considering the internal moisture state. To this end, the moisture dependence of electrical resistivity in under-percolated cement-based composites was mainly evaluated, along with other material properties such as strength, shrinkage, and flowability. Results revealed that the electrical resistivity increased almost linearly as the internal relative humidity (IRH) decreased, and the increase was more pronounced below the percolation threshold. In addition, it was found that the strength gained by the microfiller effect of MWCNTs was significantly reduced particularly in under-percolated mixtures, leading to overall strength reductions. Furthermore, this study showed that the more the MWCNT was added, the smaller the flowability was obtained due to the increased viscosity of the mixture. The findings of this study are expected to provide pivotal information for accurate and reliable interpretations of self-sensing data generated by MWCNT-embedded cement-based composites. © 2021
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Seong Cheol photo

Choi, Seong Cheol
공과대학 (건설환경플랜트공학)
Read more

Altmetrics

Total Views & Downloads

BROWSE