Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Creep Behavior of Graphene Oxide, Silk Fibroin, and Cellulose Nanocrystal Bionanofilms

Full metadata record
DC Field Value Language
dc.contributor.authorShakil, A.-
dc.contributor.authorKim, S.-
dc.contributor.authorPolycarpou, A.A.-
dc.date.accessioned2022-02-10T04:42:31Z-
dc.date.available2022-02-10T04:42:31Z-
dc.date.issued2022-06-
dc.identifier.issn2196-7350-
dc.identifier.issn2196-7350-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/54947-
dc.description.abstractGraphene oxide (GO), silk fibroin (SF), and cellulose nanocrystal (CNC) nanocomposite is a novel biomaterial with superior mechanical properties. Elevated temperature nanoindentation experiments using constant load hold method are performed to investigate temperature-dependent mechanical and creep behavior of the GO–SF–CNC nanocomposite. Hardness and reduced modulus of GO–SF–CNC are determined from experiments at 25, 40, 60, 80, and 100 °C, and yield strength and creep coefficients are predicted from finite element analysis using two-layer viscoplasticity theory. Results show that increasing the temperature from 25 to 80 °C, hardness, reduced modulus, and yield strength of GO–SF–CNC nanocomposite dramatically increase by 112%, 40%, and 140% respectively, and creep displacements during constant load hold reduce by 53%. It is attributed to increasing in crystallizations in the nanocomposite because of increasing in β-sheet formations of SF material and reduction in water molecules in CNC material. However, at 100 °C, the mechanical properties deteriorate, and creep displacements increase because of water evaporation from the nanocomposite, making it weaker. Hardness-to-yield strength ratio is found within 1.84–2.06. Maximum creep exponent is 2.9 at 40 °C, which reduces to 2.06 at 80 °C and again increases to 2.27 at 100 °C. © 2022 Wiley-VCH GmbH.-
dc.language영어-
dc.language.isoENG-
dc.publisherJohn Wiley and Sons Inc-
dc.titleCreep Behavior of Graphene Oxide, Silk Fibroin, and Cellulose Nanocrystal Bionanofilms-
dc.typeArticle-
dc.identifier.doi10.1002/admi.202101640-
dc.identifier.bibliographicCitationAdvanced Materials Interfaces, v.9, no.18-
dc.description.isOpenAccessN-
dc.identifier.wosid000742710400001-
dc.identifier.scopusid2-s2.0-85122795483-
dc.citation.number18-
dc.citation.titleAdvanced Materials Interfaces-
dc.citation.volume9-
dc.type.docTypeArticle-
dc.publisher.location미국-
dc.subject.keywordAuthorcreep-
dc.subject.keywordAuthorfinite element analysis-
dc.subject.keywordAuthorgraphene nanoindentation-
dc.subject.keywordAuthorthin films-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusPHYSICAL-PROPERTIES-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusMODULUS-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusNANOMEMBRANES-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusMEMBRANES-
dc.subject.keywordPlusHARDNESS-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Sung Han photo

Kim, Sung Han
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE