Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Adaptive Partial Offloading and Resource Harmonization in Wireless Edge Computing-Assisted IoE Networks

Full metadata record
DC Field Value Language
dc.contributor.authorLakew, D.S.-
dc.contributor.authorTuong, V.D.-
dc.contributor.authorDao, N.-
dc.contributor.authorCho, Sungrae-
dc.date.accessioned2022-03-10T02:40:13Z-
dc.date.available2022-03-10T02:40:13Z-
dc.date.issued2022-09-
dc.identifier.issn2327-4697-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/55386-
dc.description.abstractWireless backhaul is considered a portable and cost-effective solution for deploying small cell-assisted communications in mobile Internet of Everything (IoE) networks. In this system, the wireless backhaul between a central gNodeB (gNB) and small cell base stations (SBSs) shares the frequency spectrum with the wireless fronthaul between the SBSs and user devices. In these circumstances, efficient edge computing deployment requires joint optimization of wireless resource harmonization and partial offloading scheduling to accommodate heterogeneous IoE services. Therefore, in this study, we formulate the system model as a Markov decision process (MDP) to minimize the weighted sum of computation overheads in terms of the latency and energy costs of all user equipment (UE) where network dynamics are considered in the system state. Consequently, an actor-critic reinforcement learning algorithm, i.e., a deep deterministic policy gradient (DDPG)-based algorithm with replay memory technique, is proposed to realize an adaptive offloading decision scheme and optimal wireless resource harmonization between the backhaul and fronthaul. Extensive simulation results reveal that the proposed algorithm reliably converges and provides approximately 70%, 55%, 36%, and 11% lower total computation overhead than UE execution, random, MEC execution, and DQN-based schemes, respectively. IEEE-
dc.format.extent17-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE Computer Society-
dc.titleAdaptive Partial Offloading and Resource Harmonization in Wireless Edge Computing-Assisted IoE Networks-
dc.typeArticle-
dc.identifier.doi10.1109/TNSE.2022.3153172-
dc.identifier.bibliographicCitationIEEE Transactions on Network Science and Engineering, v.9, no.5, pp 3028 - 3044-
dc.description.isOpenAccessN-
dc.identifier.wosid000852246800009-
dc.identifier.scopusid2-s2.0-85125324162-
dc.citation.endPage3044-
dc.citation.number5-
dc.citation.startPage3028-
dc.citation.titleIEEE Transactions on Network Science and Engineering-
dc.citation.volume9-
dc.type.docTypeArticle-
dc.publisher.location미국-
dc.subject.keywordAuthorDeep reinforcement learning-
dc.subject.keywordAuthordeterministic policy gradient-
dc.subject.keywordAuthorIoE-
dc.subject.keywordAuthorpartial offloading-
dc.subject.keywordAuthorresource allocation-
dc.subject.keywordPlusALLOCATION-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordPlusMAXIMIZATION-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusMEC-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMathematics, Interdisciplinary Applications-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Software > School of Computer Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Sung Rae photo

Cho, Sung Rae
소프트웨어대학 (소프트웨어학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE