Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

ABA and polyamines act independently in primary leaves of cold-stressed tomato (Lycopersicon esculentum)

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Tae Eun-
dc.contributor.authorKim, Seong-Ki-
dc.contributor.authorHan, Tae Jin-
dc.contributor.authorLee, June Seung-
dc.contributor.authorChang, Soo Chul-
dc.date.accessioned2022-04-06T01:40:19Z-
dc.date.available2022-04-06T01:40:19Z-
dc.date.issued2002-07-
dc.identifier.issn0031-9317-
dc.identifier.issn1399-3054-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/55892-
dc.description.abstractThe effects of ABA and putrescine, a polyamine, on cold-induced membrane leakage were investigated using primary leaves of wild-type and an ABA-deficient mutant, flacca , of tomato (Lycopersicon esculentum Mill.). The amount of chilling-induced electrolyte leakage from flacca leaves was much higher than that from the wild-type leaves. When applied exogenously ABA reduced cold-induced electrolyte leakage from leaves of both wild-type and the flacca mutant. However, the cold-induced electrolyte leakage from flacca leaves was not as pronounced as in the wild-type indicating that ABA is an important mediator in response to cold stress in the leaves. Putrescine reduced cold-induced electrolyte leakage from both wild-type and flacca leaves. Synthesis of putrescine in the leaves was increased by cold treatment. DFMO, a biosynthetic inhibitor of the polyamine, increased electrolyte leakage from cold-treated leaves, and exogenously applied putrescine decreased the enhanced leakage to the control level. Therefore, this polyamine is thought also to be involved in the response to cold stress of tomato leaves. Both ABA and putrescine were protective against cold stress, but exogenously applied ABA decreased the endogenous level of putrescine in the leaves. Furthermore, the DMFO-increased electrolyte leakage in cold-stressed leaves was completely abolished by the application of ABA. These results suggest that ABA is a major regulator in the response to cold stress in tomato leaves and that it does not exert its role via putrescine in the response to cold stress.-
dc.format.extent7-
dc.publisherBLACKWELL MUNKSGAARD-
dc.titleABA and polyamines act independently in primary leaves of cold-stressed tomato (Lycopersicon esculentum)-
dc.typeArticle-
dc.identifier.doi10.1034/j.1399-3054.2002.1150306.x-
dc.identifier.bibliographicCitationPHYSIOLOGIA PLANTARUM, v.115, no.3, pp 370 - 376-
dc.description.isOpenAccessN-
dc.identifier.wosid000176442100006-
dc.identifier.scopusid2-s2.0-0036061805-
dc.citation.endPage376-
dc.citation.number3-
dc.citation.startPage370-
dc.citation.titlePHYSIOLOGIA PLANTARUM-
dc.citation.volume115-
dc.publisher.location미국-
dc.subject.keywordPlusREGULATED GENE-EXPRESSION-
dc.subject.keywordPlusINDUCED PHYSIOLOGICAL-CHANGES-
dc.subject.keywordPlusENDOGENOUS ABSCISIC-ACID-
dc.subject.keywordPlusCHILLING INJURY-
dc.subject.keywordPlusARABIDOPSIS-THALIANA-
dc.subject.keywordPlusFREEZING TOLERANCE-
dc.subject.keywordPlusWATER TREATMENTS-
dc.subject.keywordPlusPEPPER FRUIT-
dc.subject.keywordPlusACCLIMATION-
dc.subject.keywordPlusMUTANTS-
dc.relation.journalResearchAreaPlant Sciences-
dc.relation.journalWebOfScienceCategoryPlant Sciences-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Natural Sciences > Department of Life Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Seong-Ki photo

Kim, Seong-Ki
자연과학대학 (생명과학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE