Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Power-Efficient Soft Pneumatic Actuator Using Spring-Frame Collateral Compression Mechanism

Full metadata record
DC Field Value Language
dc.contributor.authorKim, S.-
dc.contributor.authorLee, S.R.-
dc.contributor.authorLee, S.-
dc.contributor.authorLee, D.-
dc.contributor.authorShin, D.-
dc.date.accessioned2022-04-25T07:40:12Z-
dc.date.available2022-04-25T07:40:12Z-
dc.date.issued2022-03-
dc.identifier.issn2076-0825-
dc.identifier.issn2076-0825-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/56724-
dc.description.abstractWith the ongoing research on soft robots, the performance of soft actuators needs to be enhanced for more wide robotic applications. Currently, most soft robots based on pneumatic ac-tuation are capable of assisting small systems, but they are not fully suited for supporting joints requiring large force and range of motion. This is due to the actuation characteristics of the pneumatic artificial muscle (PAM); they are relatively slow, inefficient, and experience a significant force reduc-tion when the PAM contracts. Hence, we propose a novel PAM based on a spring-frame collateral compression mechanism. With only a single compressed air source, the external mesh-covered and inner spring-frame actuators of the proposed PAM operate simultaneously to generate considerable force. Additionally, the design of the internal actuator within the void space of PAM reduces the air consumption and consequently improves the actuator’s operating speed and efficiency. We experimentally confirmed that the proposed PAM exhibited 31.2% greater force, was 25.6% faster, and consumed 21.5% lower air compared to the conventional McKibben muscles. The performance en-hancement of the proposed PAM improves the performance of soft robots, allowing the development of more compact robots with greater assistive range. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.-
dc.language영어-
dc.language.isoENG-
dc.publisherMDPI-
dc.titlePower-Efficient Soft Pneumatic Actuator Using Spring-Frame Collateral Compression Mechanism-
dc.typeArticle-
dc.identifier.doi10.3390/act11030076-
dc.identifier.bibliographicCitationActuators, v.11, no.3-
dc.description.isOpenAccessN-
dc.identifier.wosid000775427400001-
dc.identifier.scopusid2-s2.0-85126043282-
dc.citation.number3-
dc.citation.titleActuators-
dc.citation.volume11-
dc.type.docTypeArticle-
dc.publisher.location스위스-
dc.subject.keywordAuthorPower efficient-
dc.subject.keywordAuthorSoft pneumatic actuator-
dc.subject.keywordAuthorSoft wearable robot-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE