Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Schottky barrier-gated high performance photodetectors using a water-borne polymeric colloid

Full metadata record
DC Field Value Language
dc.contributor.authorCho, J.-
dc.contributor.authorSim, K. M.-
dc.contributor.authorYoon, S.-
dc.contributor.authorHa, J.-
dc.contributor.authorChung, D. S.-
dc.date.accessioned2023-03-08T18:19:46Z-
dc.date.available2023-03-08T18:19:46Z-
dc.date.issued2016-
dc.identifier.issn2040-3364-
dc.identifier.issn2040-3372-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/64395-
dc.description.abstractHere, we demonstrate the synergetic application of a cationic surfactant (CTAB) for the fabrication of a fast response organic photoconductor via an environmentally benign fabrication process. A water-borne colloid of the semiconducting polymer PBTTT was fabricated via a mini-emulsion process with CTAB as the surfactant, and deposited onto a Au-patterned substrate to complete the photoconductor device geometry. Due to the preferential adsorption of the ammonium cation of the CTAB molecules onto the Au surface, a dipole layer was created and thus the work function of Au was significantly reduced, as confirmed by ultraviolet photoelectron spectroscopic studies. We show that the resulting Schottky barrier between Au-CTAB and PBTTT can be used as an artificial 'gate' for a trap-limited photoconductive mechanism, leading to a fast temporal response of the photoconductor without sacrificing the efficient photoconductive gain-generating mechanism. As a result, a high detectivity of 4.92 x 10(10) Jones, as well as a high gain of 107, can be realized from the PBTTT-based organic photoconductor. This result opens the possibility of fabricating high performance and simple structured organic photodetectors via a nontoxic fabrication process.-
dc.format.extent7-
dc.language영어-
dc.language.isoENG-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleSchottky barrier-gated high performance photodetectors using a water-borne polymeric colloid-
dc.typeArticle-
dc.identifier.doi10.1039/c6nr03949a-
dc.identifier.bibliographicCitationNANOSCALE, v.8, no.30, pp 14643 - 14649-
dc.description.isOpenAccessN-
dc.identifier.wosid000381417800038-
dc.identifier.scopusid2-s2.0-84980006612-
dc.citation.endPage14649-
dc.citation.number30-
dc.citation.startPage14643-
dc.citation.titleNANOSCALE-
dc.citation.volume8-
dc.type.docTypeArticle-
dc.publisher.location영국-
dc.subject.keywordPlusHIGH-GAIN-
dc.subject.keywordPlusEFFICIENCY-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Chemical Engineering and Material Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE