Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Sub-millimeter resolution electrical conductivity images of brain tissues using magnetic resonance-based electrical impedance tomography

Full metadata record
DC Field Value Language
dc.contributor.authorOh, Tong In-
dc.contributor.authorKim, Hyun Bum-
dc.contributor.authorJeong, Woo Chul-
dc.contributor.authorSajib, Saurav Z. K.-
dc.contributor.authorKyung, Eun Jung-
dc.contributor.authorKim, Hyung Joong-
dc.contributor.authorKwon, Oh In-
dc.contributor.authorWoo, Eung Je-
dc.date.accessioned2023-03-08T18:51:47Z-
dc.date.available2023-03-08T18:51:47Z-
dc.date.issued2015-07-
dc.identifier.issn0003-6951-
dc.identifier.issn1077-3118-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/64537-
dc.description.abstractRecent magnetic resonance (MR)-based electrical impedance tomography (MREIT) of in vivo animal and human subjects enabled the imaging of electromagnetic properties, such as conductivity and permittivity, on tissue structure and function with a few millimeter pixel size. At those resolutions, the conductivity contrast might be sufficient to distinguish different tissue type for certain applications. Since the precise measurement of electrical conductivity under the tissue levels can provide alternative information in a wide range of biomedical applications, it is necessary to develop high-resolution MREIT technique to enhance its availability. In this study, we provide the experimental evaluation of sub-millimeter resolution conductivity imaging method using a 3T MR scanner combined with a multi-echo MR pulse sequence, multi-channel RF coil, and phase optimization method. From the phantom and animal imaging results, sub-millimeter resolution exhibited similar signal-to-noise ratio of MR magnitude and noise levels in magnetic flux density comparing to the existing millimeter resolution. The reconstructed conductivity images at sub-millimeter resolution can distinguish different brain tissues with a pixel size as small as 350 mu m. (C) 2015 AIP Publishing LLC.-
dc.language영어-
dc.language.isoENG-
dc.publisherAMER INST PHYSICS-
dc.titleSub-millimeter resolution electrical conductivity images of brain tissues using magnetic resonance-based electrical impedance tomography-
dc.typeArticle-
dc.identifier.doi10.1063/1.4926920-
dc.identifier.bibliographicCitationAPPLIED PHYSICS LETTERS, v.107, no.2-
dc.description.isOpenAccessN-
dc.identifier.wosid000358530300055-
dc.identifier.scopusid2-s2.0-84937239622-
dc.citation.number2-
dc.citation.titleAPPLIED PHYSICS LETTERS-
dc.citation.volume107-
dc.type.docTypeArticle-
dc.publisher.location미국-
dc.subject.keywordPlusMULTI-ECHO-
dc.subject.keywordPlusMREIT-
dc.subject.keywordPlusDENSITY-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Pharmacy > School of Pharmacy > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE