Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

'Living cantilever arrays' for characterization of mass of single live cells in fluids

Full metadata record
DC Field Value Language
dc.contributor.authorPark, K.-
dc.contributor.authorJang, J.-
dc.contributor.authorIrimia, D.-
dc.contributor.authorSturgis, J.-
dc.contributor.authorLee, J.-
dc.contributor.authorRobinson, J.P.-
dc.contributor.authorToner, M.-
dc.contributor.authorBashir, R.-
dc.date.accessioned2023-03-09T00:20:36Z-
dc.date.available2023-03-09T00:20:36Z-
dc.date.issued2008-
dc.identifier.issn1473-0197-
dc.identifier.issn1473-0189-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/65345-
dc.description.abstractThe size of a cell is a fundamental physiological property and is closely regulated by various environmental and genetic factors. Optical or confocal microscopy can be used to measure the dimensions of adherent cells, and Coulter counter or flow cytometry (forward scattering light intensity) can be used to estimate the volume of single cells in a flow. Although these methods could be used to obtain the mass of single live cells, no method suitable for directly measuring the mass of single adherent cells without detaching them from the surface is currently available. We report the design, fabrication, and testing of 'living cantilever arrays', an approach to measure the mass of single adherent live cells in fluid using silicon cantilever mass sensor. HeLa cells were injected into microfluidic channels with a linear array of functionalized silicon cantilevers and the cells were subsequently captured on the cantilevers with positive dielectrophoresis. The captured cells were then cultured on the cantilevers in a microfluidic environment and the resonant frequencies of the cantilevers were measured. The mass of a single HeLa cell was extracted from the resonance frequency shift of the cantilever and was found to be close to the mass value calculated from the cell density from the literature and the cell volume obtained from confocal microscopy. This approach can provide a new method for mass measurement of a single adherent cell in its physiological condition in a non-invasive manner, as well as optical observations of the same cell. We believe this technology would be very valuable for single cell time-course studies of adherent live cells. © The Royal Society of Chemistry.-
dc.format.extent8-
dc.language영어-
dc.language.isoENG-
dc.publisherRoyal Society of Chemistry-
dc.title'Living cantilever arrays' for characterization of mass of single live cells in fluids-
dc.typeArticle-
dc.identifier.doi10.1039/b803601b-
dc.identifier.bibliographicCitationLab on a Chip, v.8, no.7, pp 1034 - 1041-
dc.description.isOpenAccessN-
dc.identifier.scopusid2-s2.0-46149114366-
dc.citation.endPage1041-
dc.citation.number7-
dc.citation.startPage1034-
dc.citation.titleLab on a Chip-
dc.citation.volume8-
dc.type.docTypeArticle-
dc.publisher.location영국-
dc.subject.keywordPlusarticle-
dc.subject.keywordPluscancer cell culture-
dc.subject.keywordPluscell function-
dc.subject.keywordPlusconfocal microscopy-
dc.subject.keywordPluscontrolled study-
dc.subject.keywordPluselectrophoresis-
dc.subject.keywordPlusflow cytometry-
dc.subject.keywordPlusHeLa cell-
dc.subject.keywordPlushuman-
dc.subject.keywordPlushuman cell-
dc.subject.keywordPluslight scattering-
dc.subject.keywordPlusmicrofluidic analysis-
dc.subject.keywordPluspriority journal-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE