Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Delayed ERK activation by ceramide reduces melanin synthesis in human melanocytes

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Dong-Seok-
dc.contributor.authorKim, Sook-Young-
dc.contributor.authorChung, Jin-Ho-
dc.contributor.authorKim, Kyu-Han-
dc.contributor.authorEun, Hee-Chul-
dc.contributor.authorPark, Kyoung-Chan-
dc.date.accessioned2023-06-16T05:44:14Z-
dc.date.available2023-06-16T05:44:14Z-
dc.date.issued2002-09-
dc.identifier.issn0898-6568-
dc.identifier.issn1873-3913-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/66865-
dc.description.abstractSphingolipid metabolites regulate many aspects of cell growth and differentiation. However, the effects of sphingolipids on the growth and melanogenesis of human melanocytes are not known. In the present study, we investigated the effects of sphingolipid metabolites and the possible signalling pathways involved in human melanocytes. Our data show that C(2)-ceramide inhibits cell growth in a dose-dependent manner, whereas sphingosine-1-phosphate (SPP) has no effect. Moreover, we observed that the melanin content of the cells was significantly decreased by C(2)-ceramide. The pigmentation-inhibiting effect of C(2)-ceramide at 1-10 muM was stronger than that of kojic acid, tested at 1-100 muM. The tyrosinase activity of cell extracts was reduced by C-ceramide treatment. However, in the cell-free system, C(2)-ceramide could not suppress tyrosinase, whereas kojic acid directly inhibited tyrosinase. These results suggest that C(2)-ceramide decreases the pigmentation of melanocytes indirectly regulating tyrosinase. Furthermore, we found that C-ceramide decreased the protein expression of microphthalmia-associated transcription factor (MITF), which is required for tyrosinase expression. To identify the signalling pathway of ceramide, we studied the ability of C(2)-ceramide to influence extracellular signal-regulated protein kinase (ERK) and Akt/protein kinase B (PKB) activation. C(2)-ceramide induced a delayed activation of ERK (>1 h) and a much later activation of AktiPKB (>3 h) in human melanocytes. In addition, the specific inhibition of the ERK and the Akt signalling pathways by PD98059 and LY294002, respectively, increased melanin synthesis. Thus, it seems that sustained ERK and Akt activation may lead to the suppression of cell growth and melanogenesis. (C) 2002 Elsevier Science Inc. All rights reserved.-
dc.format.extent7-
dc.language영어-
dc.language.isoENG-
dc.publisherELSEVIER SCIENCE INC-
dc.titleDelayed ERK activation by ceramide reduces melanin synthesis in human melanocytes-
dc.typeArticle-
dc.identifier.doi10.1016/S0898-6568(02)00024-4-
dc.identifier.bibliographicCitationCELLULAR SIGNALLING, v.14, no.9, pp 779 - 785-
dc.description.isOpenAccessN-
dc.identifier.wosid000176658300007-
dc.identifier.scopusid2-s2.0-0036015173-
dc.citation.endPage785-
dc.citation.number9-
dc.citation.startPage779-
dc.citation.titleCELLULAR SIGNALLING-
dc.citation.volume14-
dc.type.docTypeArticle-
dc.publisher.location미국-
dc.subject.keywordAuthorceramide-
dc.subject.keywordAuthorERK-
dc.subject.keywordAuthorAkt/PKB-
dc.subject.keywordAuthorMITF-
dc.subject.keywordAuthortyrosinase-
dc.subject.keywordAuthormelanogenesis-
dc.subject.keywordAuthorproliferation-
dc.subject.keywordPlusTUMOR-NECROSIS-FACTOR-
dc.subject.keywordPlusCELL-PERMEABLE CERAMIDE-
dc.subject.keywordPlusSIGNAL-REGULATED KINASE-
dc.subject.keywordPlusARACHIDONIC-ACID-
dc.subject.keywordPlusPROTEIN-KINASE-
dc.subject.keywordPlusFACTOR-ALPHA-
dc.subject.keywordPlusSPHINGOMYELIN HYDROLYSIS-
dc.subject.keywordPlusPROLIFERATION-
dc.subject.keywordPlusDIFFERENTIATION-
dc.subject.keywordPlusINHIBITION-
dc.relation.journalResearchAreaCell Biology-
dc.relation.journalWebOfScienceCategoryCell Biology-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Medicine > College of Medicine > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Dong Seok photo

Kim, Dong Seok
의과대학 (의학부(기초))
Read more

Altmetrics

Total Views & Downloads

BROWSE