Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Fe, Al-co-doped NiSe2 nanoparticles on reduced graphene oxide as an efficient bifunctional electrocatalyst for overall water splitting

Authors
Chen, LuluJang, HaeseongKim, Min GyuQin, QingLiu, XienCho, Jaephil
Issue Date
Jul-2020
Publisher
ROYAL SOC CHEMISTRY
Citation
NANOSCALE, v.12, no.25, pp 13680 - 13687
Pages
8
Journal Title
NANOSCALE
Volume
12
Number
25
Start Page
13680
End Page
13687
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/69314
DOI
10.1039/d0nr02881a
ISSN
2040-3364
2040-3372
Abstract
Developing low-cost and highly efficient electrocatalysts for overall water splitting is of far-reaching significance for new energy conversion. Herein, dual-cation Fe, Al-co-doped NiSe(2)nanoparticles on reduced graphene oxide (Fe, Al-NiSe2/rGO) were prepared as a bifunctional electrocatalyst for overall water splitting. The dual-cation doping can induce a stronger electronic interaction between the foreign atoms and host catalyst, for optimizing the adsorption energy of reaction intermediates. Meanwhile, the leaching out of Al from the crystal structure of the target product during the alkaline wash creates more defects and increases the active site exposure. As a result, the Fe, Al-NiSe2/rGO catalyst exhibits excellent catalytic activities for both the OER and HER with an overpotential of 272 mV @eta(10)for the OER in 1.0 M KOH and 197 mV @eta(10)for the HER in 0.5 M H2SO4, respectively. A two-electrode electrolyzer using Fe, Al-NiSe2/rGO as the anode and cathode shows a low voltage of 1.70 V at the current density of 10 mA cm(-2). This study emphasizes the synergistic contribution of the dual-cation co-doping effect and more defects created by Al leaching to boost the performance of water splitting.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jang, Haeseong photo

Jang, Haeseong
대학원 (스마트시티학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE