Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Building High-Rate Nickel-Rich Cathodes by Self-Organization of Structurally Stable Macrovoid

Full metadata record
DC Field Value Language
dc.contributor.authorKalluri, Sujith-
dc.contributor.authorCha, Hyungyeon-
dc.contributor.authorKim, Junhyeok-
dc.contributor.authorLee, Hyomyung-
dc.contributor.authorJang, Haeseong-
dc.contributor.authorCho, Jaephil-
dc.date.accessioned2024-01-08T06:31:59Z-
dc.date.available2024-01-08T06:31:59Z-
dc.date.issued2020-04-
dc.identifier.issn2198-3844-
dc.identifier.issn2198-3844-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/69329-
dc.description.abstractNickel-rich materials, as a front-running cathode for lithium-ion batteries suffer from inherent degradation issues such as inter/intragranular cracks and phase transition under the high-current density condition. Although vigorous efforts have mitigated these current issues, the practical applications are not successfully achieved due to the material instability and complex synthesis process. Herein, a structurally stable, macrovoid-containing, nickel-rich material is developed using an affordable, scalable, and one-pot coprecipitation method without using surfactants/etching agents/complex-ion forming agents. The strategically developed macrovoid-induced cathode via a self-organization process exhibits excellent full-cell rate capability, cycle life at discharge rate of 5 C, and structural stability even at the industrial electrode conditions, owing to the fast Li-ion diffusion, the internal macrovoid acting as "buffer zones" for stress relief, and highly stable nanostructure around the void during cycling. This strategy for nickel-rich cathodes can be viable for industries in the preparation of high-performance lithium-ion cells.-
dc.language영어-
dc.language.isoENG-
dc.publisherWILEY-
dc.titleBuilding High-Rate Nickel-Rich Cathodes by Self-Organization of Structurally Stable Macrovoid-
dc.typeArticle-
dc.identifier.doi10.1002/advs.201902844-
dc.identifier.bibliographicCitationADVANCED SCIENCE, v.7, no.7-
dc.description.isOpenAccessY-
dc.identifier.wosid000512457200001-
dc.identifier.scopusid2-s2.0-85079453378-
dc.citation.number7-
dc.citation.titleADVANCED SCIENCE-
dc.citation.volume7-
dc.type.docTypeArticle-
dc.publisher.location미국-
dc.subject.keywordAuthorhigh-power lithium ion batteries-
dc.subject.keywordAuthorKirkendall effect-
dc.subject.keywordAuthorLiNi0-
dc.subject.keywordAuthor6>Co0-
dc.subject.keywordAuthor2Mn0-
dc.subject.keywordAuthor2O(2)-
dc.subject.keywordAuthormacrovoid structure-
dc.subject.keywordAuthorone-pot synthesis-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusION-
dc.subject.keywordPlusNI-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusPARTICLES-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordPlusCRACKING-
dc.subject.keywordPlusLAYER-
dc.subject.keywordPlusSHELL-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jang, Haeseong photo

Jang, Haeseong
대학원 (스마트시티학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE