Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Multiscale analysis of prelithiated silicon nanowire for Li-ion battery

Full metadata record
DC Field Value Language
dc.contributor.authorChang, Seongmin-
dc.contributor.authorMoon, Janghyuk-
dc.contributor.authorCho, Kyeongjae-
dc.contributor.authorCho, Maenghyo-
dc.date.accessioned2024-01-08T06:32:31Z-
dc.date.available2024-01-08T06:32:31Z-
dc.date.issued2015-02-
dc.identifier.issn0927-0256-
dc.identifier.issn1879-0801-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/69354-
dc.description.abstractA diffusion induced stress (DIS) model based on the finite element method was used to analyze mechanical stress within a multiscale framework for silicon nanowire anodes designed for use in Li-ion batteries. With a prelithiated nanowire, the mechanical moduli of lithium silicide and the migration energy barriers of lithium were calculated by density functional theory method, while the diffusion constants for lithium silicide were obtained using kinetic Monte Carlo simulations. Unlike previous DIS analyses, this multiscale approach reveals a decreasing hoop stress with increasing lithium concentration. Furthermore, an increase in the diffusion coefficient with Li concentration was also found to be a much more significant factor than the reduction in the mechanical moduli, causing a prelithiated silicon anode to experience lower stress levels than pristine silicon. On the basis of this finding, it is concluded that prelithiation reduces the loss in cycling performance that typically occurs due largely to an excess of induced stress. © 2014 Elsevier Ltd. All rights reserved.-
dc.format.extent6-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier-
dc.titleMultiscale analysis of prelithiated silicon nanowire for Li-ion battery-
dc.typeArticle-
dc.identifier.doi10.1016/j.commatsci.2014.11.001-
dc.identifier.bibliographicCitationComputational Materials Science, v.98, pp 99 - 104-
dc.description.isOpenAccessN-
dc.identifier.wosid000346733000016-
dc.identifier.scopusid2-s2.0-84911915259-
dc.citation.endPage104-
dc.citation.startPage99-
dc.citation.titleComputational Materials Science-
dc.citation.volume98-
dc.type.docTypeArticle-
dc.publisher.location네델란드-
dc.subject.keywordAuthorDensity functional theory-
dc.subject.keywordAuthorDiffusion induced stress-
dc.subject.keywordAuthorLi-ion battery-
dc.subject.keywordAuthorMonte Carlo simulation-
dc.subject.keywordAuthorSilicon nanowire-
dc.subject.keywordPlusAB-INITIO-
dc.subject.keywordPlusNEGATIVE ELECTRODE-
dc.subject.keywordPlus1ST PRINCIPLES-
dc.subject.keywordPlusELASTIC-MODULI-
dc.subject.keywordPlusANODE MATERIAL-
dc.subject.keywordPlusINDUCED STRESS-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusSI-
dc.subject.keywordPlusLITHIATION-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Energy System Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Moon, Jang Hyuk photo

Moon, Jang Hyuk
공과대학 (에너지시스템 공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE