Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Long-term stability of lithium–sulfur batteries via synergistic integration of nitrogen-doped graphitic carbon-coated cobalt selenide nanocrystals within porous three-dimensional graphene-carbon nanotube microspheres

Full metadata record
DC Field Value Language
dc.contributor.authorSaroha, Rakesh-
dc.contributor.authorKa, Hye Seon-
dc.contributor.authorPark, Gi Dae-
dc.contributor.authorCho, Chungyeon-
dc.contributor.authorKang, Dong-Won-
dc.contributor.authorCho, Jung Sang-
dc.date.accessioned2024-01-24T05:31:39Z-
dc.date.available2024-01-24T05:31:39Z-
dc.date.issued2024-02-
dc.identifier.issn0378-7753-
dc.identifier.issn1873-2755-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/71348-
dc.description.abstractThree-dimensional porous microspheres consist of highly conductive reduced graphene oxide-carbon nanotube (rGO‒CNT) framework with well-embedded cobalt selenide (CoSe2) nanocrystals coated with N-doped graphitic carbon (NGC) were synthesized (referred as “P–CoSe2@NGC/rGO‒CNT” microspheres) and utilized as an electrocatalytic interlayer to enhance the performance of lithium-sulfur (Li–S) batteries. The incorporation of the NGC layer and rGO‒CNT framework not only enhances the electronic conductivity significantly but also offers numerous conductive pathways (primary and secondary) for efficient electron transport. Macropores (φ = 100 nm) formed by the decomposition of PS nanobeads (φ = 200 nm) guarantee effective electrolyte penetration and short diffusion pathways. Moreover, the CoSe2 nanocrystals offer a multitude of polar active sites that effectively anchor polysulfide intermediates, reducing the loss of active material. Benefiting from the nanostructure merits, Li–S cells featuring a P–CoSe2@NGC/rGO‒CNT-coated separator and a conventional sulfur electrode demonstrated outstanding rate capability (up to 2.0 C) and remarkable cycling stability (1000 cycles at 2.0 C). Even under more demanding cell conditions, such as high sulfur content (71 %), high sulfur loading (4.6 mg cm−2), and low E/S (5.6 μL mg−1) ratio, the cell exhibits impressive cycling stability with 420 cycles at 0.1 C, along with feasible rate performance up to 0.3 C. © 2023 Elsevier B.V.-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier B.V.-
dc.titleLong-term stability of lithium–sulfur batteries via synergistic integration of nitrogen-doped graphitic carbon-coated cobalt selenide nanocrystals within porous three-dimensional graphene-carbon nanotube microspheres-
dc.typeArticle-
dc.identifier.doi10.1016/j.jpowsour.2023.233893-
dc.identifier.bibliographicCitationJournal of Power Sources, v.592-
dc.description.isOpenAccessN-
dc.identifier.wosid001139845600001-
dc.identifier.scopusid2-s2.0-85179606770-
dc.citation.titleJournal of Power Sources-
dc.citation.volume592-
dc.type.docTypeArticle-
dc.publisher.location네델란드-
dc.subject.keywordAuthorCarbon nanotube-
dc.subject.keywordAuthorGraphene-
dc.subject.keywordAuthorLithium-sulfur batteries-
dc.subject.keywordAuthorMetal selenide-
dc.subject.keywordAuthorMultifunctional interlayers-
dc.subject.keywordAuthorSpray pyrolysis-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusELECTROCHEMICAL PERFORMANCES-
dc.subject.keywordPlusCATHODE MATERIAL-
dc.subject.keywordPlusION-
dc.subject.keywordPlusPOLYSULFIDE-
dc.subject.keywordPlusHOLLOW-
dc.subject.keywordPlusNANOSPHERES-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordPlusNANOFIBERS-
dc.subject.keywordPlusINTERLAYER-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Energy System Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Dong-Won photo

Kang, Dong-Won
공과대학 (에너지시스템 공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE