Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A superior anti-fouling electrode sensing layer based on a tannic acid–polyethyleneimine–graphene oxide nanocomposite for thrombin detection in complex biological fluids

Full metadata record
DC Field Value Language
dc.contributor.authorHwan Shin, Jae-
dc.contributor.authorChoi, Chang-Hyung-
dc.contributor.authorWang, Shumin-
dc.contributor.authorPil Park, Jong-
dc.date.accessioned2024-03-11T07:02:35Z-
dc.date.available2024-03-11T07:02:35Z-
dc.date.issued2024-04-
dc.identifier.issn0169-4332-
dc.identifier.issn1873-5584-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/72752-
dc.description.abstractAffinity-peptide-based electrochemical sensors have emerged as promising alternatives to conventional methods because of their superior stability, chemical adaptability, and selectivity. However, their rapid loss of sensitivity caused by inactivation of the electrode surface and biological fouling has hindered their further development. To address this issue, we fabricated a sensitive and selective bifunctional peptide-based electrochemical sensor that enables thrombin detection in complex biological fluids. To achieve this, we incorporated a nanohybrid hydrogel composed of cross-linked polyphenol (tannic acid, TA) and polyamine (polyethyleneimine, PEI) co-deposition systems containing a nanomaterial (graphene oxide, GO) into the biosensor as an anti-fouling layer. The TA-PEI-GO nanohybrid hydrogel enhanced the electron transfer process and selectivity of the biosensor, while preventing the adsorption of non-specific biomolecules. As a result, the stability of the electrode surface was improved, and functionalization of the active sites for engineered peptides was achieved in a highly oriented manner. The stability, simplicity, and ease of preparation of this nanohybrid hydrogel render it a suitable candidate for the fabrication of electrochemical biosensors that can function in complex biological fluids. The developed biosensor has the potential to facilitate the diagnosis and prognosis of coagulation disorder-related diseases, which would have a positive effect on public health. © 2024 Elsevier B.V.-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier B.V.-
dc.titleA superior anti-fouling electrode sensing layer based on a tannic acid–polyethyleneimine–graphene oxide nanocomposite for thrombin detection in complex biological fluids-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2024.159302-
dc.identifier.bibliographicCitationApplied Surface Science, v.652-
dc.description.isOpenAccessN-
dc.identifier.wosid001154950600001-
dc.identifier.scopusid2-s2.0-85182030353-
dc.citation.titleApplied Surface Science-
dc.citation.volume652-
dc.type.docTypeArticle-
dc.publisher.location네델란드-
dc.subject.keywordAuthorAnti-fouling coating-
dc.subject.keywordAuthorBifunctional peptide-
dc.subject.keywordAuthorElectrochemical sensor-
dc.subject.keywordAuthorNanohybrid-
dc.subject.keywordAuthorThrombin-
dc.subject.keywordPlusBIOSENSOR-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Jong Pil photo

Park, Jong Pil
대학원 (식품생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE