Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

IMC-PnG: Maximizing runtime performance and timing guarantee for imprecise mixed-criticality real-time scheduling

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Jaewoo-
dc.contributor.authorLee, Jinkyu-
dc.date.accessioned2024-07-22T06:01:40Z-
dc.date.available2024-07-22T06:01:40Z-
dc.date.issued2024-11-
dc.identifier.issn0167-739X-
dc.identifier.issn1872-7115-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/75020-
dc.description.abstractMixed-Criticality (MC) systems have successfully overcome the limitation of traditional real-time systems based on pessimistic Worst-Case Execution Times (WCETs), by using different WCETs depending on different criticalities. One of the important yet unsolved problems of current MC systems is to achieve two goals (G1 and G2) for low-criticality tasks without compromising timing guarantees for high-criticality tasks: (G1) providing a certain (degraded) level of timing guarantees for all low-criticality tasks; (G2) while maximizing the fully-serviced (non-degraded) execution of low-criticality tasks. To address the problem, we propose IMC-PnG, an MC scheduling framework, which employs two salient features: a task-level virtual-deadline assignment under the imprecise computing model with efficient resource utilization (supporting G1), and an online scheduling algorithm that dynamically changes criticality levels of individual tasks at runtime (supporting G2). In simulation results with random workloads, we showed that IMC-PnG has up to 12.10% higher schedulability and up to 42.10% higher runtime performance (measured by the fully-serviced ratio of low-criticality tasks) than the existing approaches. © 2024 Elsevier B.V.-
dc.format.extent14-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier B.V.-
dc.titleIMC-PnG: Maximizing runtime performance and timing guarantee for imprecise mixed-criticality real-time scheduling-
dc.typeArticle-
dc.identifier.doi10.1016/j.future.2024.06.015-
dc.identifier.bibliographicCitationFuture Generation Computer Systems, v.160, pp 406 - 419-
dc.description.isOpenAccessN-
dc.identifier.scopusid2-s2.0-85196321785-
dc.citation.endPage419-
dc.citation.startPage406-
dc.citation.titleFuture Generation Computer Systems-
dc.citation.volume160-
dc.type.docTypeArticle-
dc.publisher.location네델란드-
dc.subject.keywordAuthorImprecise computing-
dc.subject.keywordAuthorMixed-Criticality Systems-
dc.subject.keywordAuthorReal-time Systems-
dc.subject.keywordAuthorSchedulability analysis-
dc.subject.keywordAuthorScheduling algorithm-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Business & Economics > Department of Industrial Security > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Jaewoo photo

Lee, Jaewoo
경영경제대학 (산업보안학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE