Detailed Information

Cited 8 time in webofscience Cited 8 time in scopus
Metadata Downloads

Fast ultrasound-assisted synthesis of Li2MnSiO4 nanoparticles for a lithium-ion battery

Full metadata record
DC Field Value Language
dc.contributor.authorHwang, Chahwan-
dc.contributor.authorKim, Taejin-
dc.contributor.authorShim, Joongpyo-
dc.contributor.authorKwak, Kyungwon-
dc.contributor.authorOk, Kang Min-
dc.contributor.authorLee, Kyung-Koo-
dc.date.available2019-03-08T16:38:19Z-
dc.date.issued2015-10-
dc.identifier.issn0378-7753-
dc.identifier.issn1873-2755-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/8994-
dc.description.abstractHigh-capacity Li2MnSiO4/C (LMS/C MBS) nanoparticles have been prepared using sonochemistry under a multibubble sonoluminescence (MBS) condition, and their physical and electrochemical properties were characterized. The results show that LMS/C MBS nanoparticles exhibit a nearly pure crystalline phase with orthorhombic structure and have a spherical shape and a uniform particle size distribution centered at a diameter of 22.5 nm. Galvanostatic charge-discharge measurements reveal that LMS/C MBS delivers an initial discharge capacity of about 260 mA h g(-1) at a current rate of 16.5 mA g(-1) in the voltage range of 1.5-4.8 V (vs. Li/Li+), while LMS MBS (LMS without a carbon source under MBS) and LMS/C SG (LMS with a carbon source using the conventional sal-gel method) possess lower capacities of 168 and 9 mA h g(-1) respectively. The improved electrochemical performance of LMS/C MBS can be ascribed to the uniform nanoparticle size, mesoporous structure, and in-situ carbon coating, which can enhance the electronic conductivity as well as the lithium ion diffusion coefficient. (C) 2015 Elsevier B.V. All rights reserved.-
dc.format.extent8-
dc.language영어-
dc.language.isoENG-
dc.publisherELSEVIER SCIENCE BV-
dc.titleFast ultrasound-assisted synthesis of Li2MnSiO4 nanoparticles for a lithium-ion battery-
dc.typeArticle-
dc.identifier.doi10.1016/j.jpowsour.2015.06.107-
dc.identifier.bibliographicCitationJOURNAL OF POWER SOURCES, v.294, pp 522 - 529-
dc.description.isOpenAccessN-
dc.identifier.wosid000358968400066-
dc.identifier.scopusid2-s2.0-84933515165-
dc.citation.endPage529-
dc.citation.startPage522-
dc.citation.titleJOURNAL OF POWER SOURCES-
dc.citation.volume294-
dc.type.docTypeArticle-
dc.publisher.location네델란드-
dc.subject.keywordAuthorLithium-ion battery-
dc.subject.keywordAuthorCathode active material-
dc.subject.keywordAuthorLithium manganese silicate-
dc.subject.keywordAuthorSonochemical reaction-
dc.subject.keywordAuthorSol-gel process-
dc.subject.keywordPlusCARBON-COATED LI2MNSIO4-
dc.subject.keywordPlusSOL-GEL METHOD-
dc.subject.keywordPlusCATHODE MATERIAL-
dc.subject.keywordPlusELECTROCHEMICAL PERFORMANCE-
dc.subject.keywordPlusPARTICLE-SIZE-
dc.subject.keywordPlusRECHARGEABLE BATTERIES-
dc.subject.keywordPlusSOLVOTHERMAL SYNTHESIS-
dc.subject.keywordPlusSONOCHEMICAL METHOD-
dc.subject.keywordPlusTIO2 NANOPARTICLES-
dc.subject.keywordPlusCOLLAPSING BUBBLE-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Natural Sciences > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE