Robust uncalibrated stereo rectification with constrained geometric distortions (USR-CGD)
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ko, Hyunsuk | - |
dc.contributor.author | Shim, Han Suk | - |
dc.contributor.author | Choi, Ouk | - |
dc.contributor.author | Kuo, C. -C. Jay | - |
dc.date.accessioned | 2021-06-22T14:23:13Z | - |
dc.date.available | 2021-06-22T14:23:13Z | - |
dc.date.issued | 2017-04 | - |
dc.identifier.issn | 0262-8856 | - |
dc.identifier.issn | 1872-8138 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/10073 | - |
dc.description.abstract | A novel algorithm for uncalibrated stereo image-pair rectification under the constraint of geometric distortion, called USR-CGD, is presented in this work. Although it is straightforward to define a rectifying transformation (or homography) given the epipolar geometry, many existing algorithms have unwanted geometric distortions as a side effect. To obtain rectified images with reduced geometric distortions while maintaining a small rectification error, we parameterize the homography by considering the influence of various kinds of geometric distortions. Next, we define several geometric measures and incorporate them into a new cost function as regularization terms for parameter optimization. Finally, we propose a constrained adaptive optimization scheme to allow a balanced performance between the rectification error and the geometric error. Extensive experimental results are provided to demonstrate the superb performance of the proposed USR-CGD method, which outperforms existing algorithms by a significant margin. (C) 2017 Elsevier B.V. All rights reserved. | - |
dc.format.extent | 17 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Elsevier BV | - |
dc.title | Robust uncalibrated stereo rectification with constrained geometric distortions (USR-CGD) | - |
dc.type | Article | - |
dc.publisher.location | 네델란드 | - |
dc.identifier.doi | 10.1016/j.imavis.2017.01.001 | - |
dc.identifier.scopusid | 2-s2.0-85012260197 | - |
dc.identifier.wosid | 000399517800011 | - |
dc.identifier.bibliographicCitation | Image and Vision Computing, v.60, pp 98 - 114 | - |
dc.citation.title | Image and Vision Computing | - |
dc.citation.volume | 60 | - |
dc.citation.startPage | 98 | - |
dc.citation.endPage | 114 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | sci | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Optics | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Artificial Intelligence | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Software Engineering | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Theory & Methods | - |
dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
dc.relation.journalWebOfScienceCategory | Optics | - |
dc.subject.keywordPlus | PROJECTIVE RECTIFICATION | - |
dc.subject.keywordPlus | VISION | - |
dc.subject.keywordAuthor | Projective rectification | - |
dc.subject.keywordAuthor | Regularization | - |
dc.subject.keywordAuthor | Homography | - |
dc.subject.keywordAuthor | Epipolar geometry | - |
dc.subject.keywordAuthor | Fundamental matrix | - |
dc.subject.keywordAuthor | Geometric distortion | - |
dc.subject.keywordAuthor | Constrained optimization | - |
dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S026288561730001X?via%3Dihub | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.