Synthesis of ultra-long cadmium telluride nanotubes via combinational chemical transformation
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Park, Kee-Ryung | - |
dc.contributor.author | Cho, Hong-Baek | - |
dc.contributor.author | Choa, Yong-Ho | - |
dc.date.accessioned | 2021-06-22T14:23:47Z | - |
dc.date.available | 2021-06-22T14:23:47Z | - |
dc.date.issued | 2017-03 | - |
dc.identifier.issn | 0254-0584 | - |
dc.identifier.issn | 1879-3312 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/10100 | - |
dc.description.abstract | Synthesis of high-throughput cadmium telluride (CdTe) nanotubes with an ultra-long aspect ratio is presented via a combination process concept combined with electrospinning, electrodeposition, and cationic exchange reaction. Ultra-long sacrificial silver (Ag) nanofibers were synthesized by electrospinning involving two-step calcination, and were then electrodeposited to create silver telluride nanotubes. These nanotubes underwent cationic exchange reaction in cadmium nitrate tetrahydrate solution with the aid of a ligand, tributylphosphine (TBP). Analysis showed that ultra-long pure zinc blende CdTe nanotubes were obtained with controlled dimension and uniform morphology. The thermodynamic driving force induced by the coordination of methanol solvent and TBP attributed to overcome the kinetic barrier between Ag2Te and CdTe nanotubes, facilitating the synthesis of CdTe nanotubes. This synthetic process involving a topotactic reaction route paves a way for high-throughput extended synthesis of new chalcogenide hollow nanotubes for application in photodetectors and solar cells. (C) 2016 Elsevier B.V. All rights reserved. | - |
dc.format.extent | 6 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Elsevier BV | - |
dc.title | Synthesis of ultra-long cadmium telluride nanotubes via combinational chemical transformation | - |
dc.type | Article | - |
dc.publisher.location | 스위스 | - |
dc.identifier.doi | 10.1016/j.matchemphys.2016.12.041 | - |
dc.identifier.scopusid | 2-s2.0-85010868358 | - |
dc.identifier.wosid | 000393723800009 | - |
dc.identifier.bibliographicCitation | Materials Chemistry and Physics, v.189, pp 64 - 69 | - |
dc.citation.title | Materials Chemistry and Physics | - |
dc.citation.volume | 189 | - |
dc.citation.startPage | 64 | - |
dc.citation.endPage | 69 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | sci | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.subject.keywordPlus | CATION-EXCHANGE | - |
dc.subject.keywordPlus | ELECTROCHEMICAL SYNTHESIS | - |
dc.subject.keywordPlus | CHALCOGENIDE | - |
dc.subject.keywordPlus | NANOWIRES | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | SEMICONDUCTOR | - |
dc.subject.keywordPlus | NANOPARTICLES | - |
dc.subject.keywordPlus | KIRKENDALL | - |
dc.subject.keywordPlus | GROWTH | - |
dc.subject.keywordPlus | OXIDE | - |
dc.subject.keywordAuthor | Chalcogenides | - |
dc.subject.keywordAuthor | Nanostructures | - |
dc.subject.keywordAuthor | Electrochemical techniques | - |
dc.subject.keywordAuthor | Photoluminescence spectroscopy | - |
dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S0254058416309518?via%3Dihub | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.