q-FREQUENT HYPERCYCLICITY IN AN ALGEBRA OF OPERATORS
- Authors
- Heo, Jaeseong; Kim, Eunsang; Kim, Seong Wook
- Issue Date
- Mar-2017
- Publisher
- 대한수학회
- Keywords
- hypercyclic operator; q-frequently hypercyclic operator; q-frequently hypercyclic subspace; strong operator topology
- Citation
- Bulletin of the KMS, v.54, no.2, pp 443 - 454
- Pages
- 12
- Indexed
- SCIE
SCOPUS
KCI
- Journal Title
- Bulletin of the KMS
- Volume
- 54
- Number
- 2
- Start Page
- 443
- End Page
- 454
- URI
- https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/10133
- DOI
- 10.4134/BKMS.b160011
- ISSN
- 1015-8634
2234-3016
- Abstract
- We study a notion of q-frequent hypercyclicity of linear maps between the Banach algebras consisting of operators on a separable infinite dimensional Banach space. We derive a sufficient condition for a linear map to be q-frequently hypercyclic in the strong operator topology. Some properties are investigated regarding q-frequently hypercyclic subspaces as shown in [5], [6] and [7]. Finally, we study q-frequent hypercyclicity of tensor products and direct sums of operators.
- Files in This Item
-
Go to Link
- Appears in
Collections - COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > ERICA 수리데이터사이언스학과 > 1. Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.