Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Full densification of inkjet-printed copper conductive tracks on a flexible substrate utilizing a hydrogen plasma sintering

Full metadata record
DC Field Value Language
dc.contributor.authorKwon, Young-Tae-
dc.contributor.authorLee, Young-In-
dc.contributor.authorKim, Seil-
dc.contributor.authorLee, Kun-Jae-
dc.contributor.authorChoa, Yong-Ho-
dc.date.accessioned2021-06-22T14:24:38Z-
dc.date.available2021-06-22T14:24:38Z-
dc.date.created2021-01-21-
dc.date.issued2017-02-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/10142-
dc.description.abstractLow temperature sintering techniques are crucial in developing flexible printed electronics. In this work, we demonstrate a novel hydrogen plasma sintering method that achieves a full reduction and densification of inkjet-printed patterns using a copper complex ion ink. After inkjet printing on polyethylene terephthalate (PET) substrates, both hydrogen plasma and conventional hydrogen thermal treatment were employed to compare the resulting microstructures, electrical properties and anti-oxidation behavior. The plasma treated pattern shows a fully densified microstructure with a resistivity of 3.23 mu Omega cm, while the thermally treated pattern shows a relatively poor microstructure and high resistivity. In addition, the hydrogen plasma-treated copper pattern retains its electrical resistivity for one month without any significant decrease. This novel hydrogen plasma sintering technique could be used to produce conductive patterns with excellent electrical properties, allowing for highly reliable flexible printed electronics. (C) 2016 Elsevier B.V. All rights reserved.-
dc.language영어-
dc.language.isoen-
dc.publisherElsevier BV-
dc.titleFull densification of inkjet-printed copper conductive tracks on a flexible substrate utilizing a hydrogen plasma sintering-
dc.typeArticle-
dc.contributor.affiliatedAuthorChoa, Yong-Ho-
dc.identifier.doi10.1016/j.apsusc.2016.11.122-
dc.identifier.scopusid2-s2.0-85006818072-
dc.identifier.wosid000391418200007-
dc.identifier.bibliographicCitationApplied Surface Science, v.396, pp.1239 - 1244-
dc.relation.isPartOfApplied Surface Science-
dc.citation.titleApplied Surface Science-
dc.citation.volume396-
dc.citation.startPage1239-
dc.citation.endPage1244-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusPOLYMER-
dc.subject.keywordPlusELECTRONICS-
dc.subject.keywordPlusFILMS-
dc.subject.keywordAuthorInkjet printing-
dc.subject.keywordAuthorCopper conductive tracks-
dc.subject.keywordAuthorFull densification-
dc.subject.keywordAuthorPlasma sintering-
dc.subject.keywordAuthorFlexible substrates-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0169433216325636?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher CHOA, YONG HO photo

CHOA, YONG HO
ERICA 공학대학 (DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE