Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Improved Schottky behavior of GaN nanorods using hydrogen plasma treatment

Full metadata record
DC Field Value Language
dc.contributor.authorReddeppa, Maddaka-
dc.contributor.authorPark, Byung-Guon-
dc.contributor.authorLee, Sang Tae-
dc.contributor.authorNguyen Hoang Hai-
dc.contributor.authorKim, Moon-Deock-
dc.contributor.authorOh, Jae-Eung-
dc.date.accessioned2021-06-22T14:41:17Z-
dc.date.available2021-06-22T14:41:17Z-
dc.date.issued2017-02-
dc.identifier.issn1567-1739-
dc.identifier.issn1878-1675-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/10495-
dc.description.abstractIn order to find the effect of hydrogen (H) treatment on leakage current and current conduction mechanism in GaN nanorods (NRs) Schottky diode, GaN NRs surface was subjected to H plasma treatment. Experimental results showed that Schottky barrier height (Phi(b))increased, while the ideality factor (n) decreases by the H treatment. The Phi(b), n of as-grown GaN NRs were found to be 0.54 eV, 2.16, on the other hand in H treated GaN NRs Schottky diodes, Phi(b) was found to be increase to 0.72 eV, and n decreased to 1.30. Barrier inhomogeneity was confirmed by temperature dependence I-V parameters. The surface state density (N-SS) calculated from Terman's method were found to be 1.21 x 10(13) eV(-1)cm(-2) and 2.15 x 10(12) eV(-1)cm(-2) for as-grown and H treated GaN NRs respectively. These results suggested H treatment effectively passivate the surface states and decreased N-SS could be leads to enhancement in the Schottky behavior of GaN NRs. (C) 2016 Elsevier B.V. All rights reserved.-
dc.format.extent5-
dc.language영어-
dc.language.isoENG-
dc.publisherELSEVIER-
dc.titleImproved Schottky behavior of GaN nanorods using hydrogen plasma treatment-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.cap.2016.11.025-
dc.identifier.scopusid2-s2.0-85002168916-
dc.identifier.wosid000393245500013-
dc.identifier.bibliographicCitationCURRENT APPLIED PHYSICS, v.17, no.2, pp 192 - 196-
dc.citation.titleCURRENT APPLIED PHYSICS-
dc.citation.volume17-
dc.citation.number2-
dc.citation.startPage192-
dc.citation.endPage196-
dc.type.docTypeArticle-
dc.identifier.kciidART002196771-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusTHERMIONIC EMISSION-
dc.subject.keywordPlusDEEP LEVELS-
dc.subject.keywordAuthorGaN nanorods-
dc.subject.keywordAuthorSchottky diode-
dc.subject.keywordAuthorLeakage current-
dc.subject.keywordAuthorHydrogenation-
dc.subject.keywordAuthorSurface state density-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S1567173916303479?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE