Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Complementary Modeling Approach for Estimating Sedimentation and Hydraulic Flushing Parameters Using Artificial Neural Networks and RESCON2 Model

Full metadata record
DC Field Value Language
dc.contributor.authorIdrees, Muhammad Bilal-
dc.contributor.authorLee, Jin-Young-
dc.contributor.authorKim, Dongkyun-
dc.contributor.authorKim, Tae-Woong-
dc.date.accessioned2021-07-28T08:09:15Z-
dc.date.available2021-07-28T08:09:15Z-
dc.date.issued2021-10-
dc.identifier.issn1226-7988-
dc.identifier.issn1976-3808-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/105749-
dc.description.abstractAccurate prediction of reservoir sediment inflows (M-in) and adaptation of feasible sediment management strategies pose challenges in water engineering. This study proposed a two-stage complementary modeling approach for comprehensive reservoir sediment management. In the first stage, artificial neural network-based models provide real-time M-in predictions using water inflow, water head, and outflow as input parameters. In the second stage, the parameter estimation method of the RESCON model is applied to hydraulic flushing in a reservoir. This approach was applied to the Sangju Weir and Nakdong River Estuary Barrage (NREB) in South Korea. Results from the RESCON model revealed that hydraulic flushing was effective for sediment management at both the Sangju Weir reservoir and the NREB approach channel. Efficient flushing at the Sangju Weir required a flushing discharge of 100 m(3)/s for 6 days and 40 m of water head. Efficient flushing at the NREB required a flushing discharge of 25 m(3)/s for 6 days with 1.8 m of water-level drawdown. The proposed approach is expected to prove useful in reservoir sediment management.-
dc.format.extent13-
dc.language영어-
dc.language.isoENG-
dc.publisher대한토목학회-
dc.titleComplementary Modeling Approach for Estimating Sedimentation and Hydraulic Flushing Parameters Using Artificial Neural Networks and RESCON2 Model-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.1007/s12205-021-1877-9-
dc.identifier.scopusid2-s2.0-85108239830-
dc.identifier.wosid000663269000005-
dc.identifier.bibliographicCitationKSCE Journal of Civil Engineering, v.25, no.10, pp 3766 - 3778-
dc.citation.titleKSCE Journal of Civil Engineering-
dc.citation.volume25-
dc.citation.number10-
dc.citation.startPage3766-
dc.citation.endPage3778-
dc.type.docTypeArticle-
dc.identifier.kciidART002756928-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Civil-
dc.subject.keywordPlusAPPROACH CHANNEL-
dc.subject.keywordPlusLOAD-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusESTUARY-
dc.subject.keywordPlusRUNOFF-
dc.subject.keywordPlusRESERVOIR-
dc.subject.keywordPlusCATCHMENT-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusIMPACTS-
dc.subject.keywordPlusYIELD-
dc.subject.keywordAuthorHydraulic flushing-
dc.subject.keywordAuthorArtificial neural networks-
dc.subject.keywordAuthorRESCON model-
dc.subject.keywordAuthorFlushing parameters-
dc.subject.keywordAuthorNakdong River-
dc.identifier.urlhttps://link.springer.com/article/10.1007/s12205-021-1877-9-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Tae Woong photo

Kim, Tae Woong
ERICA 공학대학 (DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE