Investigation of hydrophobic MoSe2 grown at edge sites on TiO2 nanofibers for photocatalytic CO2 reduction
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kang, S. | - |
dc.contributor.author | Khan, H. | - |
dc.contributor.author | Lee, C. | - |
dc.contributor.author | Kwon, K. | - |
dc.contributor.author | Sunyong, Lee C. | - |
dc.date.accessioned | 2021-07-28T08:10:54Z | - |
dc.date.available | 2021-07-28T08:10:54Z | - |
dc.date.issued | 2021-09 | - |
dc.identifier.issn | 1385-8947 | - |
dc.identifier.issn | 1873-3212 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/105778 | - |
dc.description.abstract | We introduce noble metal-free TiO2/MoSe2 heterostructures to achieve high yields and high selectivity during the artificial photosynthesis of CO2 via a reduction process. It demonstrated CH4 production amount of 174.02 μmol/g, and CO production amount of 478.46 μmol/g, with CO2 selectivity of 80%. We fabricated uniform MoSe2 nanosheets grown at edge sites on TiO2 nanofibers using a solvothermal method. These MoSe2 nanosheet heterostructures were classified as overgrown, full-grown, or partially grown. Fully and uniformly grown MoSe2 nanosheets on TiO2 nanofibers, at 3% TiO2/MoSe2 (with 3% atomic ratio of Ti/Mo), showed superior photocatalytic CO2 reduction due to the very large specific surface area and high CO2 adsorption ability. Moreover, the high contact angle (~113°) indicated a hydrophobic surface, which suppressed H2O contact and production of protons for H2 formation, while also enhancing contact with CO2 to promote photocatalytic CO2 reduction. Based on this, 3% TiO2/MoSe2 displayed the highest CO2 selectivity, of 80%, among the heterostructures. The noble metal-free TiO2/MoSe2 heterostructure with uniform growth of MoSe2 nanosheets, having abundant CO2 adsorption sites and a highly hydrophobic surface, facilitated electron transport through the interface between TiO2 and MoSe2. The edge sites on the MoSe2 basal plane enabled a strong redox reaction at the surface, which enhanced the amounts of CO and CH4 gases via photocatalytic CO2 reduction. © 2021 Elsevier B.V. | - |
dc.format.extent | 11 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Elsevier B.V. | - |
dc.title | Investigation of hydrophobic MoSe2 grown at edge sites on TiO2 nanofibers for photocatalytic CO2 reduction | - |
dc.type | Article | - |
dc.publisher.location | 스위스 | - |
dc.identifier.doi | 10.1016/j.cej.2021.130496 | - |
dc.identifier.scopusid | 2-s2.0-85107038819 | - |
dc.identifier.wosid | 000663706600007 | - |
dc.identifier.bibliographicCitation | Chemical Engineering Journal, v.420, pp 1 - 11 | - |
dc.citation.title | Chemical Engineering Journal | - |
dc.citation.volume | 420 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 11 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalWebOfScienceCategory | Engineering, Environmental | - |
dc.relation.journalWebOfScienceCategory | Engineering, Chemical | - |
dc.subject.keywordPlus | Artificial photosynthesis | - |
dc.subject.keywordPlus | Contact angle | - |
dc.subject.keywordPlus | Electron transport properties | - |
dc.subject.keywordPlus | Hydrophobicity | - |
dc.subject.keywordPlus | Molybdenum compounds | - |
dc.subject.keywordPlus | Nanofibers | - |
dc.subject.keywordPlus | Nanosheets | - |
dc.subject.keywordPlus | Precious metals | - |
dc.subject.keywordPlus | Selenium compounds | - |
dc.subject.keywordPlus | Surface reactions | - |
dc.subject.keywordPlus | Titanium dioxide | - |
dc.subject.keywordPlus | Wetting | - |
dc.subject.keywordAuthor | Artificial photosynthesis | - |
dc.subject.keywordAuthor | CO2 selectivity | - |
dc.subject.keywordAuthor | Electron transport | - |
dc.subject.keywordAuthor | Hydrophobicity | - |
dc.subject.keywordAuthor | MoSe2 | - |
dc.subject.keywordAuthor | TiO2 nanofibers | - |
dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S1385894721020829?via%3Dihub#! | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.