Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Reinforcement Learning for Random Access in Multi-cell Networks

Full metadata record
DC Field Value Language
dc.contributor.authorLee, D.-
dc.contributor.authorZhao, Y.-
dc.contributor.authorLee, J.-
dc.date.accessioned2021-07-28T08:11:39Z-
dc.date.available2021-07-28T08:11:39Z-
dc.date.issued2021-04-
dc.identifier.issn0000-0000-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/105791-
dc.description.abstractIn this paper, our goal is to maximize the system throughput in a time-slotted uplink multi-cell random access communication system. To this end, we propose a two-stage reinforcement learning (RL)-based algorithm based on the exponential-weight algorithm for exploration and exploitation (EXP3). In each macro-Time slot that consists of multiple time slots, users run the RL-based algorithm to choose the associated access point (AP). Then, a transmission policy determines the sub-Time slot that user will transmit data in each time slot. Another RL-based learning algorithm is used to obtain an optimal transmission policy. To show that our method is efficient, we compare our proposed algorithm with the $\epsilon$-greedy algorithm in two different scenarios. The simulation results show that the average system throughput of our algorithm outperforms that of $\epsilon$-greedy exploration. © 2021 IEEE.-
dc.format.extent4-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleReinforcement Learning for Random Access in Multi-cell Networks-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/ICAIIC51459.2021.9415281-
dc.identifier.scopusid2-s2.0-85105520898-
dc.identifier.wosid000674469600069-
dc.identifier.bibliographicCitation3rd International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2021, pp 335 - 338-
dc.citation.title3rd International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2021-
dc.citation.startPage335-
dc.citation.endPage338-
dc.type.docTypeConference Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordPlusReinforcement learning-
dc.subject.keywordPlusExploration and exploitation-
dc.subject.keywordPlusGreedy algorithms-
dc.subject.keywordPlusGreedy exploration-
dc.subject.keywordPlusMulti-cell networks-
dc.subject.keywordPlusOptimal transmission policy-
dc.subject.keywordPlusRandom-access communications-
dc.subject.keywordPlusSystem throughput-
dc.subject.keywordPlusTransmission policy-
dc.subject.keywordPlusLearning algorithms-
dc.subject.keywordAuthorExponential-weight algorithm for Exploration and Exploitation-
dc.subject.keywordAuthorMulti-Armed bandit-
dc.subject.keywordAuthorRandom access-
dc.subject.keywordAuthorReinforcement learning-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/9415281-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Joo hyun photo

Lee, Joo hyun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE