Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ruthenium(II)-curcumin liposome nanoparticles: Synthesis, characterization, and their effects against cervical cancer

Full metadata record
DC FieldValueLanguage
dc.contributor.authorLakshmi,Buddolla Anantha-
dc.contributor.authorReddy, Ankireddy Seshadri-
dc.contributor.authorSangubotla, Roopkumar-
dc.contributor.authorHong, Jongwook-
dc.contributor.authorKim, Sanghyo-
dc.date.accessioned2021-07-28T08:12:23Z-
dc.date.available2021-07-28T08:12:23Z-
dc.date.created2021-07-14-
dc.date.issued2021-08-
dc.identifier.issn0927-7765-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/105807-
dc.description.abstractRuthenium complexes have increased the scope for improvement in current cancer treatment by replacing platinum-based drugs. However, to reduce metal-associated toxicity, a biocompatible flavonoid, such as curcumin, is indispensable, as it offers uncompensated therapeutic benefits through formation of complexes. In this study, we synthesized metal-based flavonoid complexes using ruthenium(II) and curcumin by adopting a convenient reflux reaction, represented as Ru-Cur complexes. These complexes were thoroughly characterized using 1H, 13C NMR, XPS, FT-IR, and UV–vis spectroscopy. As curcumin is sparingly soluble in water and has poor chemical stability, we loaded Ru-Cur complexes into liposomes and further formed nanoparticles (NPs) using the thin layer evaporation method. These were named Ru-Cur loaded liposome nanoparticles (RCLNPs). The effects of RCLNPs on cell proliferation was investigated using human cervical cancer cell lines (HeLa). These RCLNPs exhibited significant cytotoxicity in HeLa cells. The anticancer properties of RCLNPs were studied using reactive oxygen species (ROS), LDH, and MTT assays as well as live-dead staining. Nuclear damage studies of RCLNPs were performed in HeLa cells using the Hoechst staining assay. © 2021-
dc.language영어-
dc.language.isoen-
dc.publisherElsevier B.V.-
dc.titleRuthenium(II)-curcumin liposome nanoparticles: Synthesis, characterization, and their effects against cervical cancer-
dc.typeArticle-
dc.contributor.affiliatedAuthorHong, Jongwook-
dc.identifier.doi10.1016/j.colsurfb.2021.111773-
dc.identifier.scopusid2-s2.0-85104913849-
dc.identifier.wosid000670362700008-
dc.identifier.bibliographicCitationColloids and Surfaces B: Biointerfaces, v.204, pp.1 - 10-
dc.relation.isPartOfColloids and Surfaces B: Biointerfaces-
dc.citation.titleColloids and Surfaces B: Biointerfaces-
dc.citation.volume204-
dc.citation.startPage1-
dc.citation.endPage10-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusBiocompatibility-
dc.subject.keywordPlusCell culture-
dc.subject.keywordPlusCell proliferation-
dc.subject.keywordPlusChemical stability-
dc.subject.keywordPlusDiseases-
dc.subject.keywordPlusDrug delivery-
dc.subject.keywordPlusLanthanum compounds-
dc.subject.keywordPlusLiposomes-
dc.subject.keywordPlusRuthenium compounds-
dc.subject.keywordPlusSynthesis (chemical)-
dc.subject.keywordPlusCervical cancers-
dc.subject.keywordPlusCurcumin-
dc.subject.keywordPlusFlavonoid-
dc.subject.keywordPlusHeLa cell-
dc.subject.keywordPlusLiposome nanoparticle-
dc.subject.keywordPlusMetal-based flavonoid-
dc.subject.keywordPlusNanoparticle synthesis-
dc.subject.keywordPlusReactive oxygen species-
dc.subject.keywordPlusRuthenium complexes-
dc.subject.keywordPlusRuthenium(II)-
dc.subject.keywordPlusNanoparticles-
dc.subject.keywordAuthorCurcumin-
dc.subject.keywordAuthorHeLa cells-
dc.subject.keywordAuthorLiposome nanoparticles-
dc.subject.keywordAuthorMetal-based flavonoid-
dc.subject.keywordAuthorReactive oxygen species-
dc.subject.keywordAuthorRuthenium(II)-
dc.identifier.urlhttps://www.scopus.com/record/display.uri?eid=2-s2.0-85104913849&origin=inward&txGid=b1769b737422d1bf5a06bbf5f386d5a8-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF BIONANO ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hong, Jong Wook photo

Hong, Jong Wook
ERICA 공학대학 (DEPARTMENT OF BIONANO ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE