Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Design and Optimization of Hybrid Excitation Synchronous Machine Based on Multi-objective Genetic Algorithm

Full metadata record
DC Field Value Language
dc.contributor.authorYang, Z.-
dc.contributor.authorZhao, W.-
dc.contributor.authorLiu, Y.-
dc.contributor.authorWang, X.-
dc.contributor.authorKwon, B.-I.-
dc.date.accessioned2021-07-28T08:13:07Z-
dc.date.available2021-07-28T08:13:07Z-
dc.date.created2021-07-14-
dc.date.issued2020-
dc.identifier.issn0000-0000-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/105820-
dc.description.abstractTo improve the electromagnetic performance of conventional hybrid excitation synchronous machine (HESM), a machine optimization method based on multi-objective genetic algorithm (MOGA) is proposed. The key idea is to improve the torque superposition by optimizing the shifting angle of permanent magnet (PM), thus to maximize the average output torque. The multi-objective global optimization method is used to comprehensively improve the torque and reduce the torque ripple and the amount of PMs. The effectiveness of the optimization scheme is verified by the finite element method (FEM), and the results show that the optimized model has higher average output torque and unit PM torque, as well as lower torque ripple when compared with the conventional model. © 2020 IEEE.-
dc.language영어-
dc.language.isoen-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleDesign and Optimization of Hybrid Excitation Synchronous Machine Based on Multi-objective Genetic Algorithm-
dc.typeArticle-
dc.contributor.affiliatedAuthorKwon, B.-I.-
dc.identifier.doi10.1109/SCEMS48876.2020.9352267-
dc.identifier.scopusid2-s2.0-85101981176-
dc.identifier.wosid000680418500022-
dc.identifier.bibliographicCitation2020 IEEE Student Conference on Electric Machines and Systems, SCEMS 2020, pp.124 - 129-
dc.relation.isPartOf2020 IEEE Student Conference on Electric Machines and Systems, SCEMS 2020-
dc.citation.title2020 IEEE Student Conference on Electric Machines and Systems, SCEMS 2020-
dc.citation.startPage124-
dc.citation.endPage129-
dc.type.rimsART-
dc.type.docTypeProceedings Paper-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordPlusElectric excitation-
dc.subject.keywordPlusGenetic algorithms-
dc.subject.keywordPlusGlobal optimization-
dc.subject.keywordPlusMultiobjective optimization-
dc.subject.keywordPlusPermanent magnets-
dc.subject.keywordPlusTorque-
dc.subject.keywordPlusTuring machines-
dc.subject.keywordPlusConventional modeling-
dc.subject.keywordPlusDesign and optimization-
dc.subject.keywordPlusElectromagnetic performance-
dc.subject.keywordPlusGlobal optimization method-
dc.subject.keywordPlusHybrid excitation synchronous machine-
dc.subject.keywordPlusMulti-objective genetic algorithm-
dc.subject.keywordPlusOptimization method-
dc.subject.keywordPlusPermanent magnets (pm)-
dc.subject.keywordPlusSynchronous machinery-
dc.subject.keywordAuthorfinite element method-
dc.subject.keywordAuthorhybrid excitation synchronous machine-
dc.subject.keywordAuthormulti-objective genetic algorithm torque superposition-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/9352267-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE