Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Survey on Machine Learning-based Medium access control technology for 6G requirements

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Yushin-
dc.contributor.authorAhn, Seyoung-
dc.contributor.authorYou, Cheolwoo-
dc.contributor.authorCho, Sunghyun-
dc.date.accessioned2022-07-18T01:30:25Z-
dc.date.available2022-07-18T01:30:25Z-
dc.date.issued2021-08-
dc.identifier.issn2640-821X-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/108146-
dc.description.abstractIn this paper, we present research trends about machine learning-based medium access control technology for 6G requirements. The complex network environment of 6G requires more intelligent communication than the 5G environment. Particularly in the medium access control layer, plenty of studies are being conducted on resource allocation and random-access problems that have become difficult to solve with existing approaches due to the increased complexity of the network. This paper briefly introduces about 6G requirements and machine learning, then investigates the latest studies on resource allocation and random-access, which consider 6G requirements using machine learning techniques. Moreover, future research directions for machine learning-based medium access control technologies are also presented.-
dc.format.extent4-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-
dc.titleA Survey on Machine Learning-based Medium access control technology for 6G requirements-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TENSYMP52854.2021.9550841-
dc.identifier.scopusid2-s2.0-85117474944-
dc.identifier.wosid000786502700032-
dc.identifier.bibliographicCitation2021 IEEE Region 10 Symposium (TENSYMP), pp 1 - 4-
dc.citation.title2021 IEEE Region 10 Symposium (TENSYMP)-
dc.citation.startPage1-
dc.citation.endPage4-
dc.type.docTypeProceedings Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordPlusRESOURCE-ALLOCATION-
dc.subject.keywordAuthor5G-
dc.subject.keywordAuthor6G-
dc.subject.keywordAuthorArtificial Intelligence-
dc.subject.keywordAuthorMachine Learning-
dc.subject.keywordAuthorMedium access control-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/9550841-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > ERICA 컴퓨터학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Sung hyun photo

Cho, Sung hyun
ERICA 소프트웨어융합대학 (ERICA 컴퓨터학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE