Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Echo-Guard: Acoustic-Based Anomaly Detection System for Smart Manufacturing Environments

Full metadata record
DC Field Value Language
dc.contributor.authorSeo, Changbae-
dc.contributor.authorLee, Gyuseop-
dc.contributor.authorLee, Yeonjoon-
dc.contributor.authorSeo, Seunghyun-
dc.date.accessioned2022-07-18T01:30:36Z-
dc.date.available2022-07-18T01:30:36Z-
dc.date.issued2021-10-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/108153-
dc.description.abstractThe Industrial Internet of Things (IIoT) provides intelligence to industrial systems by linking sensors and devices with computer systems and software. However, it also increases the attack surface and exposes industrial systems to various types of IIoT threats. Smart manufacturing environments, built based on IIoT, are also automated and unattended and must respond to physical threats (e.g., vandalism, destruction, theft, etc.) and cybersecurity threats (e.g., DoS, DDOS, backdoor, etc.). In this paper, we propose Echo-Guard, an acoustic-based anomaly detection system to protect smart manufacturing environments. The Echo-Guard records acoustic signals coming from machines in the smart manufacturing environment and converts them into spectrogram images. The spectrogram images are further classified using CNN to detect anomalies in machine motion sounds. Our evaluation, conducted in a smart factory environment, shows that Echo-Guard is effective, achieving 99.44% accuracy, confirming the possibility that machine motion sounds can be utilized to detect anomalies. © 2021, Springer Nature Switzerland AG.-
dc.format.extent12-
dc.language영어-
dc.language.isoENG-
dc.publisherSpringer Science and Business Media Deutschland GmbH-
dc.titleEcho-Guard: Acoustic-Based Anomaly Detection System for Smart Manufacturing Environments-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1007/978-3-030-89432-0_6-
dc.identifier.scopusid2-s2.0-85118988752-
dc.identifier.wosid000728361600006-
dc.identifier.bibliographicCitationInformation Security Applications 22nd International Conference, WISA 2021, Jeju Island, South Korea, August 11–13, 2021, Revised Selected Papers, v.13009 LNCS, pp 64 - 75-
dc.citation.titleInformation Security Applications 22nd International Conference, WISA 2021, Jeju Island, South Korea, August 11–13, 2021, Revised Selected Papers-
dc.citation.volume13009 LNCS-
dc.citation.startPage64-
dc.citation.endPage75-
dc.type.docTypeConference Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.subject.keywordPlusINDUSTRIAL INTERNET-
dc.subject.keywordPlusHEALTH MANAGEMENT-
dc.subject.keywordPlusPROGNOSTICS-
dc.subject.keywordPlusSCHEME-
dc.subject.keywordPlusSENSOR-
dc.subject.keywordPlusFILTER-
dc.subject.keywordAuthorAnomaly detection-
dc.subject.keywordAuthorCNN-
dc.subject.keywordAuthorIIoT-
dc.subject.keywordAuthorIntrusion detection-
dc.subject.keywordAuthorMonitoring-
dc.subject.keywordAuthorPhysical threats-
dc.subject.keywordAuthorSignal processing-
dc.subject.keywordAuthorSmart manufacturing-
dc.identifier.urlhttps://link.springer.com/chapter/10.1007/978-3-030-89432-0_6-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Seo, Seung-Hyun photo

Seo, Seung-Hyun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE