Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ultrafast relaxation dynamics in bimetallic plasmonic catalysts

Full metadata record
DC Field Value Language
dc.contributor.authorSim, Sangwan-
dc.contributor.authorBeierle, Alyssa-
dc.contributor.authorMantos, Philip-
dc.contributor.authorMcCrory, Steven-
dc.contributor.authorPrasankumar, Rohit P.-
dc.contributor.authorChowdhury, Sanchari-
dc.date.accessioned2021-06-22T09:04:26Z-
dc.date.available2021-06-22T09:04:26Z-
dc.date.created2021-01-21-
dc.date.issued2020-05-
dc.identifier.issn2040-3364-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/1101-
dc.description.abstractCombining a plasmonic metal, such as gold, with other popular catalysts, such as Ni or Pt, can extend its benefits to many energy-extensive reactions catalyzed by those metals. The efficiency of a plasmon-enhanced catalytic reaction is mainly determined by the light absorption cross section and the photoexcited charge carrier relaxation dynamics of the nanoparticles. We have investigated the charge carrier relaxation dynamics of gold/nickel (Au/Ni) and gold/platinum (Au/Pt) bimetallic nanoparticles. We found that the addition of Ni or Pt to gold can reduce light absorption in gold nanoparticles. However, electron-phonon coupling rates of Au/Ni and Au/Pt nanoparticles are significantly faster than that of pure Au nanoparticles. This is due to the fact that both Ni and Pt possess significantly larger electron-phonon coupling constants and higher densities of states near the Fermi level in comparison with Au. Additionally, the phonon-phonon coupling rate of bimetallic Au/Pt and Au/Ni nanoparticles was significantly different from that of pure gold nanoparticles, due to the acoustic impedance mismatch at the nanoparticle/substrate interface. Our findings provide important insights into the rational design of bimetallic plasmonic catalysts.-
dc.language영어-
dc.language.isoen-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleUltrafast relaxation dynamics in bimetallic plasmonic catalysts-
dc.typeArticle-
dc.contributor.affiliatedAuthorSim, Sangwan-
dc.identifier.doi10.1039/d0nr00831a-
dc.identifier.scopusid2-s2.0-85084626217-
dc.identifier.wosid000536643200037-
dc.identifier.bibliographicCitationNANOSCALE, v.12, no.18, pp.10284 - 10291-
dc.relation.isPartOfNANOSCALE-
dc.citation.titleNANOSCALE-
dc.citation.volume12-
dc.citation.number18-
dc.citation.startPage10284-
dc.citation.endPage10291-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusOPTICAL-PROPERTIES-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusNANOSTRUCTURES-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusCONVERSION-
dc.subject.keywordPlusNANORODS-
dc.subject.keywordPlusSOLAR-
dc.subject.keywordPlusPD-
dc.identifier.urlhttps://pubs.rsc.org/en/content/articlelanding/2020/NR/D0NR00831A-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Sim, Sang wan photo

Sim, Sang wan
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE