Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Machine Learning and Deep Learning for Throughput Prediction

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Dongwon-
dc.contributor.authorLee, Joohyun-
dc.date.accessioned2022-10-07T12:11:02Z-
dc.date.available2022-10-07T12:11:02Z-
dc.date.issued2021-08-
dc.identifier.issn2165-8528-
dc.identifier.issn2165-8536-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/111026-
dc.description.abstractWireless communication contains many fluctuations than wired networks. In this paper, we present several machine learning and deep learning models to predict future network throughput, which is crucial for reducing latency in online streaming services. This paper explains the main components of the throughput prediction system. The throughput prediction model includes data input, data training, and prediction computation parts. This model accepts network throughput for the training data of the model and forecasts future data. We also present the advantages and limitations of utilizing AI models for throughput prediction. Finally, we believe that this study highlights the impact of deep learning techniques for throughput prediction.-
dc.format.extent3-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-
dc.titleMachine Learning and Deep Learning for Throughput Prediction-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/ICUFN49451.2021.9528756-
dc.identifier.scopusid2-s2.0-85115625429-
dc.identifier.wosid000790175200106-
dc.identifier.bibliographicCitation2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN), v.2021-August, pp 452 - 454-
dc.citation.title2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)-
dc.citation.volume2021-August-
dc.citation.startPage452-
dc.citation.endPage454-
dc.type.docTypeProceedings Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorthroughput prediction-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/9528756?arnumber=9528756&SID=EBSCO:edseee-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Joo hyun photo

Lee, Joo hyun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE