Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Structural and Electronic Modulations of Imidazolium Covalent Organic Framework-Derived Electrocatalysts for Oxygen Redox Reactions in Rechargeable Zn-Air Batteries

Full metadata record
DC FieldValueLanguage
dc.contributor.authorJu, Jong-Min-
dc.contributor.authorLee, Chi Ho-
dc.contributor.authorPark, Jung Hyun-
dc.contributor.authorLee, Jun-Hyeong-
dc.contributor.authorLee, Hajin-
dc.contributor.authorShin, Jae-Hoon-
dc.contributor.authorKwak, Seon-Yeong-
dc.contributor.authorLee, Sang Uck-
dc.contributor.authorKim, Jong-Ho-
dc.date.accessioned2023-01-25T09:16:11Z-
dc.date.available2023-01-25T09:16:11Z-
dc.date.created2023-01-12-
dc.date.issued2022-06-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/111447-
dc.description.abstractCovalent organic frameworks (COFs) are promising candidates for the controllable design of electrocatalysts. However, bifunctional electrocatalytic activities for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) remain challenging in COFs. In this study, imidazolium-rich COFs (IMCOFs) with well-defined active sites and characteristic three-dimensional assembly structures were readily prepared, and their electronic structures were tuned by Co incorporation to elicit bifunctional electrocatalytic activities for the ORR and OER. The Co nanoparticle-incorporated spherical IMCOF-derived electrocatalyst (CoNP-s-IMCOF) exhibited lower overpotentials for the ORR and OER compared with the atomic Co-incorporated planar IMCOF-derived electrocatalyst (Co-p-IMCOF). Computational simulations revealed that the imidazole carbon sites of CoNP-s-INICOF rather than the triazine carbons were the active sites for the ORR and OER, and its p-band center downshifted via charge transfer, facilitating the chemisorption of oxygen intermediates during the reactions. A Zn-air battery with CoNP-s-IMCOF exhibited a small voltage gap of 1.3 V with excellent durability for 935 cycles. This approach for control over the three-dimensional assembly and electronic structures of IMCOFs can be extended to the development of diverse catalytic nanomaterials for applications of interest.-
dc.language영어-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.titleStructural and Electronic Modulations of Imidazolium Covalent Organic Framework-Derived Electrocatalysts for Oxygen Redox Reactions in Rechargeable Zn-Air Batteries-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Sang Uck-
dc.identifier.doi10.1021/acsami.2c04194-
dc.identifier.scopusid2-s2.0-85131218920-
dc.identifier.wosid000892365200029-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.14, no.21, pp.24404 - 24414-
dc.relation.isPartOfACS APPLIED MATERIALS & INTERFACES-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume14-
dc.citation.number21-
dc.citation.startPage24404-
dc.citation.endPage24414-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusDOPED CARBON-
dc.subject.keywordPlusTRIAZINE FRAMEWORKS-
dc.subject.keywordPlusGRAPHENE OXIDE-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusNITROGEN-
dc.subject.keywordPlusCATALYST-
dc.subject.keywordPlusCOMPLEX-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordAuthorimidazolium-rich covalent organic framework-
dc.subject.keywordAuthorbifunctional electrocatalyst-
dc.subject.keywordAuthoroxygen reduction reaction-
dc.subject.keywordAuthoroxygen evolution reaction-
dc.subject.keywordAuthorZn-air battery-
Files in This Item
There are no files associated with this item.
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE