Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

3D printed solid-state composite electrodes and electrolytes for high-energy-density flexible microsupercapacitors

Full metadata record
DC Field Value Language
dc.contributor.authorCho, K.G.-
dc.contributor.authorJang, S.S.-
dc.contributor.authorHeo, I.-
dc.contributor.authorKyung, H.-
dc.contributor.authorYoo, W.C.-
dc.contributor.authorLee, K.H.-
dc.date.accessioned2023-02-07T00:51:35Z-
dc.date.available2023-02-07T00:51:35Z-
dc.date.created2023-02-02-
dc.date.issued2022-09-
dc.identifier.issn2352-152X-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/111467-
dc.description.abstractAlthough flexible microsupercapacitors (MSCs) have attracted significant attention for wearable electronics, their energy storage performance and energy density need to be improved for widespread applications. In this study, flexible MSCs displaying enhanced areal capacitance and energy density with high active material loading were fabricated; to realize this, three-dimensional (3D) printing was utilized to deposit an electrochemically stable ionic liquid (IL)-based solid-state ionogel electrolyte and a 3D interconnected large mesoporous carbon (3DMC)-based composite electrode. The ionogel consisting of 1-ethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide ([EMI][TFSI]) and polyvinylidene fluoride-co-hexafluoropropylene (P(VDF-HFP)) was employed to increase an operating potential range of the MSCs. The 3DMC composite electrode, which consists of 3DMC, single-walled carbon nanotubes (SWCNTs), P(VDF-HFP), and [EMI][TFSI], was successfully printed to facilitate ion transport of the ionogel and to customize 3D structures. 3D printed MSCs exhibited outstanding supercapacitive energy storage performance, including very high specific capacitance of 110.4 mF cm−2, energy density of 60.6 μWh cm−2, power density of 0.89 mW cm−2, and outstanding mechanical durability of 97% capacitance retention after 1000 successive 90° bending/releasing cycles. These results provide a promising strategy for fabricating flexible MSCs based on composite electrolytes and electrodes for superior supercapacitive energy storage performance. © 2022 Elsevier Ltd-
dc.language영어-
dc.language.isoen-
dc.publisherElsevier Ltd-
dc.title3D printed solid-state composite electrodes and electrolytes for high-energy-density flexible microsupercapacitors-
dc.typeArticle-
dc.contributor.affiliatedAuthorYoo, W.C.-
dc.identifier.doi10.1016/j.est.2022.105206-
dc.identifier.scopusid2-s2.0-85145815747-
dc.identifier.wosid000828164800002-
dc.identifier.bibliographicCitationJournal of Energy Storage, v.53-
dc.relation.isPartOfJournal of Energy Storage-
dc.citation.titleJournal of Energy Storage-
dc.citation.volume53-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusMICRO-SUPERCAPACITORS-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordAuthor3D printing-
dc.subject.keywordAuthorFlexible device-
dc.subject.keywordAuthorLarge mesoporous carbon-
dc.subject.keywordAuthorMicrosupercapacitor-
dc.subject.keywordAuthorSolid polymer electrolyte-
Files in This Item
There are no files associated with this item.
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher yoo, won cheol photo

yoo, won cheol
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY (DEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE