Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

MTrajPlanner: A Multiple-Trajectory Planning Algorithm for Autonomous Underwater Vehicles

Full metadata record
DC Field Value Language
dc.contributor.authorGong, Yue-Jiao-
dc.contributor.authorHuang, Ting-
dc.contributor.authorMa, Yi-Ning-
dc.contributor.authorJeon, Sang-Woon-
dc.contributor.authorZhang, Jun-
dc.date.accessioned2023-04-03T10:02:23Z-
dc.date.available2023-04-03T10:02:23Z-
dc.date.issued2023-04-
dc.identifier.issn1524-9050-
dc.identifier.issn1558-0016-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/111629-
dc.description.abstractTrajectory planning is a crucial task in designing the navigation systems of automatic underwater vehicles (AUVs). Due to the complexity of underwater environments, decision makers may hope to obtain multiple alternative trajectories in order to select the best. This paper focuses on the multiple-trajectory planning (MTP) problem, which is a new topic in this field. First, we establish a comprehensive MTP model for AUVs, by taking into account the complex underwater environments, the efficiency of each trajectory, and the diversity among different trajectories, simultaneously. Then, to solve the MTP, we develop an ant colony-based trajectory optimizer, which is characterized by a niching strategy, a decayed alarm pheromone measure, and a diversified heuristic measure. The niching strategy assists in identifying and maintaining a diverse set of high-quality solutions. The use of decayed alarm pheromone and diversified heuristic further improves the search effectiveness and efficiency of the algorithm. Experimental results on practical datasets show that our proposed algorithm not only provides multiple AUV trajectories for a flexible choice, but it also outperforms the state-of-the-art algorithms in terms of the single trajectory efficiency.-
dc.format.extent14-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.titleMTrajPlanner: A Multiple-Trajectory Planning Algorithm for Autonomous Underwater Vehicles-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TITS.2023.3234937-
dc.identifier.scopusid2-s2.0-85148417168-
dc.identifier.wosid000932805000001-
dc.identifier.bibliographicCitationIEEE Transactions on Intelligent Transportation Systems, v.24, no.4, pp 3714 - 3727-
dc.citation.titleIEEE Transactions on Intelligent Transportation Systems-
dc.citation.volume24-
dc.citation.number4-
dc.citation.startPage3714-
dc.citation.endPage3727-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTransportation-
dc.relation.journalWebOfScienceCategoryEngineering, Civil-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTransportation Science & Technology-
dc.subject.keywordPlusANT COLONY OPTIMIZATION-
dc.subject.keywordAuthorTrajectory-
dc.subject.keywordAuthorPlanning-
dc.subject.keywordAuthorOptimization-
dc.subject.keywordAuthorTrajectory planning-
dc.subject.keywordAuthorIndexes-
dc.subject.keywordAuthorTask analysis-
dc.subject.keywordAuthorGenetic algorithms-
dc.subject.keywordAuthorAnt colony system-
dc.subject.keywordAuthorautonomous underwater vehicles-
dc.subject.keywordAuthormultiple-trajectory planning-
dc.subject.keywordAuthorniching-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/10038633-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jeon, Sang Woon photo

Jeon, Sang Woon
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE