Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Room-Temperature Sub-ppm Detection and Machine Learning-Based High-Accuracy Selective Analysis of Ammonia Gas Using Silicon Vertical Microwire Arrays

Authors
Kim, JaekyunLe, Quang TrungShikoh, Ali SehparKang, KuminLee, Jeongho
Issue Date
Jan-2023
Publisher
AMER CHEMICAL SOC
Keywords
silicon microwires; MaCE; ammonia; gas sensor; silver nanowire; machine learning
Citation
ACS Applied Electronic Materials, pp 1 - 10
Pages
10
Indexed
SCIE
SCOPUS
Journal Title
ACS Applied Electronic Materials
Start Page
1
End Page
10
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/112826
DOI
10.1021/acsaelm.2c01383
ISSN
2637-6113
Abstract
The potential applications of silicon microwire materials in monitoring gases have not been fully exploited. Uniform silicon vertical microwire arrays (Si VMWA) are fabricated using a metal-assisted chemical etching process after optimizing the conditions. The characteristics and responses of Si VMWA-based sensors with different diameters to ammonia gas (NH3) are investigated in both air and nitrogen environments. The sensing mechanism of the sensor to NH3 is discussed to clarify the response in different environments. The sensor exhibits a linear response to a wide range of NH3 concentrations (4%@2 ppm-122%@500 ppm) at room temperature and even shows a distinct response at 200 ppb of NH3. In addition, it demonstrates great repeatability/reversibility and moderate selectivity to ammonia gas against other gases (nitrogen dioxide, toluene, and isobutane). Furthermore, machine learning-based principal component analysis and random forest algorithms enable us to discriminate NH3 from other possible interfering gases and predict gas concentration with an accuracy of over 95%. Thus, our approach using the Si VMWA-based sensor with machine learning-based data analysis represents a significant step toward the environmental sensing of specific chemical analytes in the household and industries.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF PHOTONICS AND NANOELECTRONICS > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher KIM, Jaekyun photo

KIM, Jaekyun
ERICA 첨단융합대학 (ERICA 반도체·디스플레이공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE