Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Distribution and structure of heterotrophic protists communities in the northeast equatorial Pacific Ocean

Authors
Yang, Eun JinChoi, Joong KiHyun, Jung-Ho
Issue Date
Dec-2004
Publisher
Springer Verlag
Citation
Marine Biology, v.146, no.1, pp 1 - 15
Pages
15
Indexed
SCIE
SCOPUS
Journal Title
Marine Biology
Volume
146
Number
1
Start Page
1
End Page
15
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/112879
DOI
10.1007/s00227-004-1412-9
ISSN
0025-3162
1432-1793
Abstract
The distribution and structure of heterotrophic protist communities and size-fractionated chlorophyll a were studied during the Korea Deep Ocean Study 98 (KODOS 98) research expedition (July 1998) in the northeast equatorial Pacific Ocean (5–11N). Areas of convergence and divergence formed at the boundaries of the South Equatorial Current (SEC), North Equatorial Current (NEC), and North Equatorial Counter Current (NECC) during the expedition. Water column physicochemical characteristics significantly influenced the size structure of heterotrophic protist communities. Intense vertical mixing and high nutrient and chlorophyll a concentrations characterized SEC and NECC areas, which were affected by converging and diverging water masses, respectively. Nanophytoplankton dominated in SEC and NECC areas; both areas also had relatively high heterotrophic protist biomasses (average 743 lg C m2). NEC areas were characterized by a stratified vertical structure, low nutrient and chlorophyll a concentrations, and picophytoplankton dominance. The heterotrophic protist biomass in NEC areas averaged 414 lgCm2; nanoprotists (˂20 lm) dominated the community. The nanoprotist biomass comprised 49–54% of the total heterotrophic protist biomass in SEC/NECC areas and 67–72% in NEC areas. The biomass of heterotrophic protists was higher in SEC/NECC areas than in NEC areas, but the relative importance of nanoprotists was greater in NEC areas than in SEC/NECC areas. Heterotrophic dinoflagellates were dominant components of the ˂20 lm and ˃20 lm size classes in both water columns. The biomass of heterotrophic protists significantly correlated with the net-, nano-, and picophytoplankton biomass in SEC/NECC areas and with the nano- and picophytoplankton biomass in NEC areas. Heterotrophic protists and phytoplankton also showed strong positive correlation in the study area. The size structure of the phytoplankton biomass coincided with that of heterotrophic protists; the heterotrophic protist biomass positively correlated with the protists’ prey source. These relationships suggest that the community structure of heterotrophic protists and the microbial food web depended on size classes within the phytoplankton biomass. Microzooplankton grazing and phytoplankton growth rates were higher in SEC/NECC areas than in NEC areas. In contrast, the potential primary production grazed by microzooplankton was relatively high in NEC areas (127.3%) compared with SEC/NECC areas (94.6%). Our results indicate that the relative importance and size structure of heterotrophic protists might vary according to two distinct water column structures.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF MARINE SCIENCE AND CONVERGENCE ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hyun, Jung Ho photo

Hyun, Jung Ho
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY (DEPARTMENT OF MARINE SCIENCE AND CONVERGENCE ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE