Developing a high-efficiency predictive model for self-temperature-compensated piezoresistive properties of carbon nanotube/graphene nanoplatelet polymer-based nanocomposites
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Haghgoo,Mojtaba | - |
dc.contributor.author | Ansari, Reza | - |
dc.contributor.author | Jang,Sung-Hwan | - |
dc.contributor.author | Kazem, Hassanzadeh-Aghdam M. | - |
dc.contributor.author | Nankali,Mohammad | - |
dc.date.accessioned | 2023-07-05T05:33:30Z | - |
dc.date.available | 2023-07-05T05:33:30Z | - |
dc.date.issued | 2023-03 | - |
dc.identifier.issn | 1359-835X | - |
dc.identifier.issn | 1878-5840 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/112958 | - |
dc.description.abstract | The thermo-resistive and piezoresistive responses of carbon nanotube (CNT)/graphene nanoplatelet (GNP) polymer-based nanocomposites are analytically investigated. The 3D representative volume element is generated by the Monte Carlo approach to incorporate the random distribution of nanofillers. The Monte Carlo approach is paired with the percolation model to investigate the percolation behavior of the nanocomposite. The validity of the analytical model is verified by comparing the predicted results with the experimental data. The Poisson's ratio and height of barrier potential influence on the piezoresistivity of nanocomposite are studied. Analytical results determine the aspect ratio and influence of carbon nanotube degree of orientation on thermoresistivity of nanocomposite. The effects of intrinsic and physical properties of GNPs on resistivity change with temperature are investigated. It is found that nanocomposite filled with CNTs presented lower percolation threshold than those filled with GNPs. The results also revealed that the filler alignment caused a higher piezoresistivity. © 2022 Elsevier Ltd | - |
dc.format.extent | 13 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Elsevier Ltd | - |
dc.title | Developing a high-efficiency predictive model for self-temperature-compensated piezoresistive properties of carbon nanotube/graphene nanoplatelet polymer-based nanocomposites | - |
dc.type | Article | - |
dc.publisher.location | 영국 | - |
dc.identifier.doi | 10.1016/j.compositesa.2022.107380 | - |
dc.identifier.scopusid | 2-s2.0-85144539326 | - |
dc.identifier.wosid | 000994138100001 | - |
dc.identifier.bibliographicCitation | Composites Part A: Applied Science and Manufacturing, v.166, pp 1 - 13 | - |
dc.citation.title | Composites Part A: Applied Science and Manufacturing | - |
dc.citation.volume | 166 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 13 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalWebOfScienceCategory | Engineering, Manufacturing | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Composites | - |
dc.subject.keywordPlus | TENSILE-STRENGTH | - |
dc.subject.keywordPlus | ELECTRICAL-CONDUCTIVITY | - |
dc.subject.keywordPlus | NANOTUBE NANOCOMPOSITES | - |
dc.subject.keywordPlus | TERNARY NANOCOMPOSITES | - |
dc.subject.keywordPlus | INTERPHASE | - |
dc.subject.keywordPlus | COMPOSITES | - |
dc.subject.keywordPlus | PERCOLATION | - |
dc.subject.keywordPlus | NANOPARTICLES | - |
dc.subject.keywordPlus | COEFFICIENT | - |
dc.subject.keywordPlus | MATRIX | - |
dc.subject.keywordAuthor | A. Multifunctional composites | - |
dc.subject.keywordAuthor | B. Hybrid | - |
dc.subject.keywordAuthor | C. Electrical properties | - |
dc.subject.keywordAuthor | D. Analytical modeling | - |
dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S1359835X22005619?via%3Dihub | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.