Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Introduction to mask‑free patterning of metal lines using aerodynamically focused nanoparticle system

Full metadata record
DC Field Value Language
dc.contributor.authorIm, Taehyeob-
dc.contributor.authorLee, Gil-Yong-
dc.contributor.authorSon, Minhee-
dc.contributor.authorLee, Caroline Sunyong-
dc.date.accessioned2023-07-05T06:30:40Z-
dc.date.available2023-07-05T06:30:40Z-
dc.date.issued2022-08-
dc.identifier.issn0883-7694-
dc.identifier.issn1938-1425-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/113536-
dc.description.abstractAbstract: We introduce an aerodynamically focused nanoparticle (AFN) system that precisely controls the flow of nanoparticles (NPs) to fabricate line patterns by aerodynamically controlling NP flow upon varying the discharge pressure without using any solvent or binders, which accompanies post processes. We optimized the air compressor pressure and performed a two-step excitation process to ensure high-quality deposition so that the AFN system usefully fabricates line patterns much narrower than its nozzle diameter. The narrower line patterns showed lower resistivities than those for wider patterns. It was observed that when NPs were concentrated at a point, their line widths decreased, while the NP deposition was dense. XRD and TEM analysis revealed that the NPs were highly focused and accelerated as crystal defects were developed. The NPs were densely deposited and adhered well to the substrate. Finally, a bending test revealed that the printed 35-μm-wide lines had the smallest resistance change during 300 cycles. Therefore, an innovative printing system called the AFN system has proven its potential to replace semiconductor patterning and inkjet printing for the application of flexible electronics. Impact statement: Globally, the need for eco-friendly process development is becoming increasingly important. To follow this trend, we introduce the aerodynamically focused nanoparticle (AFN) system that precisely controls flow of nanoparticles (NPs) to fabricate line patterns by aerodynamically controlling NP flow without using any mask, which subsequently follows etching with toxic chemicals, and solvent or binders, which accompanies post processes. Therefore, this innovative system can obtain the desired pattern in a simple and eco-friendly manner. We optimized the air compressor pressure and performed a two-step excitation process to ensure high-quality deposition so that the AFN system usefully fabricates line patterns much narrower than its nozzle diameter. In this research, the flow of NPs can result in a narrow line pattern, which is 1/24 of the size of the nozzle. The narrower line patterns showed lower resistivities than those for wider patterns. When NPs were concentrated at a point, their line widths decreased, while the NP deposition became dense. XRD and TEM analysis revealed that the NPs were highly focused and accelerated as crystal defects were developed. Therefore, an innovative printing system called the AFN system, has proven its potential to replace semiconductor patterning and inkjet printing for the application of flexible electronics. Graphical abstract: [Figure not available: see fulltext.] © 2022, The Author(s), under exclusive License to the Materials Research Society.-
dc.format.extent8-
dc.language영어-
dc.language.isoENG-
dc.publisherMaterials Research Society-
dc.titleIntroduction to mask‑free patterning of metal lines using aerodynamically focused nanoparticle system-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1557/s43577-022-00314-5-
dc.identifier.scopusid2-s2.0-85129393633-
dc.identifier.wosid000788431100001-
dc.identifier.bibliographicCitationMRS Bulletin, v.47, no.8, pp 783 - 790-
dc.citation.titleMRS Bulletin-
dc.citation.volume47-
dc.citation.number8-
dc.citation.startPage783-
dc.citation.endPage790-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusCARBON-
dc.subject.keywordAuthorAerodynamically focused nanoparticles-
dc.subject.keywordAuthorLine patterning method-
dc.subject.keywordAuthorMicro-sized line pattern-
dc.subject.keywordAuthorSilver nanoparticles-
dc.subject.keywordAuthorSolvent-free-
dc.identifier.urlhttps://link.springer.com/article/10.1557/s43577-022-00314-5?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Sunyong Caroline photo

Lee, Sunyong Caroline
ERICA 공학대학 (DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE