Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

High-Performance Sub-Micrometer Channel WSe2 Field-Effect Transistors Prepared Using a Flood–Dike Printing Method

Full metadata record
DC Field Value Language
dc.contributor.authorWu, Fanqi-
dc.contributor.authorChen, Liang-
dc.contributor.authorZhang, Anyi-
dc.contributor.authorHong, Yi-Lun-
dc.contributor.authorShih, Nai-Yun-
dc.contributor.authorCho, Seong-Yong-
dc.contributor.authorDrake, Gryphon A.-
dc.contributor.authorFleetham, Tyler-
dc.contributor.authorCong, Sen-
dc.contributor.authorCao, Xuan-
dc.contributor.authorLiu, Qingzhou-
dc.contributor.authorLiu, Yihang-
dc.contributor.authorXu, Chi-
dc.contributor.authorMa, Yuqiang-
dc.contributor.authorShim, Moonsub-
dc.contributor.authorThompson, Mark E.-
dc.contributor.authorRen, Wencai-
dc.contributor.authorCheng, Hui-Ming-
dc.contributor.authorZhou, Chongwu-
dc.date.accessioned2023-08-07T07:31:35Z-
dc.date.available2023-08-07T07:31:35Z-
dc.date.issued2017-12-
dc.identifier.issn1936-0851-
dc.identifier.issn1936-086X-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/113731-
dc.description.abstractPrinting technology has potential to offer a cost-effective and scalable way to fabricate electronic devices based on two-dimensional (2D) transition metal dichalcogenides (TMDCs). However, limited by the registration accuracy and resolution of printing, the previously reported printed TMDC field-effect transistors (FETs) have relatively long channel lengths (13-200 μm), thus suffering low current-driving capabilities (≤0.02 μA/μm). Here, we report a "flood-dike" self-aligned printing technique that allows the formation of source/drain metal contacts on TMDC materials with sub-micrometer channel lengths in a reliable way. This self-aligned printing technique involves three steps: (i) printing of gold ink on a WSe2 flake to form the first gold electrode, (ii) modifying the surface of the first gold electrode with a self-assembled monolayer (SAM) to lower the surface tension and render the surface hydrophobic, and (iii) printing of gold ink close to the SAM-treated first electrode at a certain distance. During the third step, the gold ink would first spread toward the edge of the first electrode and then get stopped by the hydrophobic SAM coating, ending up forming a sub-micrometer channel. With this printing technique, we have successfully downscaled the channel length to ∼750 nm and achieved enhanced on-state current densities of ∼0.64 μA/μm (average) and high on/off current ratios of ∼3 × 105 (average). Furthermore, with our high-performance printed WSe2 FETs, driving capabilities for quantum-dot light-emitting diodes (LEDs), inorganic LEDs, and organic LEDs have been demonstrated, which reveals the potential of using printed TMDC electronics for display backplane applications. © 2017 American Chemical Society.-
dc.format.extent11-
dc.language영어-
dc.language.isoENG-
dc.publisherAmerican Chemical Society-
dc.titleHigh-Performance Sub-Micrometer Channel WSe2 Field-Effect Transistors Prepared Using a Flood–Dike Printing Method-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1021/acsnano.7b06654-
dc.identifier.scopusid2-s2.0-85040082636-
dc.identifier.wosid000418990200082-
dc.identifier.bibliographicCitationACS Nano, v.11, no.12, pp 12536 - 12546-
dc.citation.titleACS Nano-
dc.citation.volume11-
dc.citation.number12-
dc.citation.startPage12536-
dc.citation.endPage12546-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusTHIN-FILM TRANSISTORS-
dc.subject.keywordPlusCARBON NANOTUBE-
dc.subject.keywordPlusMONOLAYER WSE2-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusTRANSPARENT-
dc.subject.keywordPlusGENERATION-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusDIODES-
dc.subject.keywordAuthorchemical vapor deposition-
dc.subject.keywordAuthorprinting-
dc.subject.keywordAuthorsub-micrometer channel-
dc.subject.keywordAuthorTMDC-
dc.subject.keywordAuthortransition metal dichalcogenides-
dc.subject.keywordAuthortungsten diselenides-
dc.subject.keywordAuthortwo-dimensional-
dc.identifier.urlhttps://www.scopus.com/record/display.uri?eid=2-s2.0-85040082636&origin=inward&txGid=245e403795e01ae550de6666647c397b#funding-details-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF PHOTONICS AND NANOELECTRONICS > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Seong Yong photo

Cho, Seong Yong
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY (DEPARTMENT OF PHOTONICS AND NANOELECTRONICS)
Read more

Altmetrics

Total Views & Downloads

BROWSE