Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Mechanical Seed Mechanism to Facilitate Homogeneous Li Metal Growth

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, Gwanghyeon-
dc.contributor.authorKim, Youngoh-
dc.contributor.authorChoi, Joonmyung-
dc.contributor.authorKim, Duho-
dc.date.accessioned2023-08-16T07:33:05Z-
dc.date.available2023-08-16T07:33:05Z-
dc.date.issued2023-09-
dc.identifier.issn1614-6832-
dc.identifier.issn1614-6840-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/113853-
dc.description.abstractAn intriguing mechanical seed (MS) concept that modulates (in)homogeneous Li metal growth is proposed based on an in-depth understanding of its fundamental mechanism using unified atomistic computations. A large dataset of thermodynamic energies for Li disordered phase decouples the dual-body interactions into three components: i) crystal-like, ii) long, and iii) short bonds of LiLi based on machine learning assisted by density function theory calculations. The contributions of these dual-body interactions offer a mechanical factor for controlling the disordered-ordered phase transition during electrochemical deposition. Macroscopic molecular dynamics simulations systematically construct the core-shell sphere and cross-sectional models to reinforce the MS premise. The former reveals that the lower energy level of disordered phase under the moderate compression causes a slow phase kinetics, whereas the strain-free mode exhibits a relatively fast transition. In addition, the cross-sectional model exhibits a smooth surface landscape for the strain-optimized case. These observations are attributed to the surface area evolutions depending on the MS conditions and elucidate the dynamic atomic displacements near the grain boundary from a local structural perspective. The proposed mechanical design concept facilitates uniform Li growth and is expected to be a global parameter in harnessing the full potential of Li metal batteries.-
dc.format.extent10-
dc.language영어-
dc.language.isoENG-
dc.publisherWiley-VCH Verlag-
dc.titleMechanical Seed Mechanism to Facilitate Homogeneous Li Metal Growth-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1002/aenm.202300816-
dc.identifier.scopusid2-s2.0-85164794409-
dc.identifier.wosid001028319500001-
dc.identifier.bibliographicCitationAdvanced Energy Materials, v.13, no.34, pp 1 - 10-
dc.citation.titleAdvanced Energy Materials-
dc.citation.volume13-
dc.citation.number34-
dc.citation.startPage1-
dc.citation.endPage10-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusHIGH-PRESSURE-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusNUCLEATION-
dc.subject.keywordPlusBATTERIES-
dc.subject.keywordPlusANODES-
dc.subject.keywordPlusGENERATION-
dc.subject.keywordPlusISSUES-
dc.subject.keywordAuthordendrites-
dc.subject.keywordAuthordensity functional theory-
dc.subject.keywordAuthorLi metal anodes-
dc.subject.keywordAuthormechanical seeds-
dc.subject.keywordAuthormolecular dynamics-
dc.identifier.urlhttps://onlinelibrary.wiley.com/doi/full/10.1002/aenm.202300816-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MECHANICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE