Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ampere-hour-scale zinc–air pouch cells

Full metadata record
DC Field Value Language
dc.contributor.authorShinde, Sambhaji S.-
dc.contributor.authorJung, Jin Young-
dc.contributor.authorWagh, Nayantara K.-
dc.contributor.authorLee, Chi Ho-
dc.contributor.authorKim, Dong-Hyung-
dc.contributor.authorKim, Sung-Hae-
dc.contributor.authorLee, Sang Uck-
dc.contributor.authorLee, Jung-Ho-
dc.date.accessioned2023-08-16T07:34:42Z-
dc.date.available2023-08-16T07:34:42Z-
dc.date.issued2021-06-
dc.identifier.issn2058-7546-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/113887-
dc.description.abstractAll-solid-state zinc–air pouch cells promise high energy-to-cost ratios with inherent safety; however, finding earth-abundant high power/energy cathodes and super-ionic electrolytes remains a fundamental challenge. Here we present realistic zinc–air pouch cells designed by the (101)-facet copper phosphosulfide [CPS(101)] as a cathode as well as anti-freezing chitosan-biocellulosics as super-ionic conductor electrolytes. The proposed CPS(101) exhibits trifunctional activity and stability (>30,000 cycles) towards reversible oxygen reactions and hydrogen evolution reactions, outperforming commercial Pt/C and RuO2. Furthermore, hydroxide super-ion conductors utilizing polymerized chitosan-biocellulosics reveal exceptional conductivity (86.7 mS cm−1 at 25 °C) with high mechanical/chemical robustness. High cell-level energy densities of 460 Wh kgcell–1/1,389 Wh l−1 are normally measured in pouch cells (1 Ah) with a cycle lifespan of 6,000/1,100 cycles at 25 mA cm−2 for 20/70% depths of discharge, and the highest densities we could achieve were 523 Wh kgcell–1/1,609 Wh l−1. Flexible pouch cells operate well at rates of 5–200 mA cm−2 over a broad temperature range of −20 to 80 °C. © 2021, The Author(s), under exclusive licence to Springer Nature Limited.-
dc.format.extent13-
dc.language영어-
dc.language.isoENG-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleAmpere-hour-scale zinc–air pouch cells-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1038/s41560-021-00807-8-
dc.identifier.scopusid2-s2.0-85104140492-
dc.identifier.wosid000639627500002-
dc.identifier.bibliographicCitationNature Energy, v.6, no.6, pp 592 - 604-
dc.citation.titleNature Energy-
dc.citation.volume6-
dc.citation.number6-
dc.citation.startPage592-
dc.citation.endPage604-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.identifier.urlhttps://www.nature.com/articles/s41560-021-00807-8-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Jung-Ho photo

Lee, Jung-Ho
ERICA 첨단융합대학 (ERICA 신소재·반도체공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE