Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Convergence and error estimates for time-discrete consensus-based optimization algorithms

Full metadata record
DC Field Value Language
dc.contributor.authorHa, Seung-Yeal-
dc.contributor.authorJin, Shi-
dc.contributor.authorKim, Doheon-
dc.date.accessioned2023-08-16T07:42:28Z-
dc.date.available2023-08-16T07:42:28Z-
dc.date.issued2021-02-
dc.identifier.issn0029-599X-
dc.identifier.issn0945-3245-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/114122-
dc.description.abstractWe present convergence and error estimates of modified versions of the time-discrete consensus-based optimization (CBO) algorithm proposed in Carrillo et al. (ESAIM: Control Optim Calc Var, 2020) for general non-convex functions. In authors’ recent work (Ha et al. in Math Models Meth Appl Sci 30:2417–2444, 2020), rigorous error analysis of a modified version of the first-order consensus-based optimization algorithm proposed in Carrillo et al. (2020) was studied at the particle level without resorting to the kinetic equation via a mean-field limit. However, the error analysis for the corresponding time- discrete algorithm was not done mainly due to lack of discrete analogue of Itô’s stochastic calculus. In this paper, we provide a simple and elementary convergence and error analysis for a general time-discrete consensus-based optimization algorithm, which includes modifications of the three discrete algorithms in Carrillo et al. (2020), two of which are present in Ha et al. (2020). Our analysis provides numerical stability and convergence conditions for the three algorithms, as well as error estimates to the global minimum. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.-
dc.format.extent28-
dc.language영어-
dc.language.isoENG-
dc.publisherSpringer Verlag-
dc.titleConvergence and error estimates for time-discrete consensus-based optimization algorithms-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1007/s00211-021-01174-y-
dc.identifier.scopusid2-s2.0-85099976384-
dc.identifier.wosid000609344800001-
dc.identifier.bibliographicCitationNumerische Mathematik, v.147, no.2, pp 255 - 282-
dc.citation.titleNumerische Mathematik-
dc.citation.volume147-
dc.citation.number2-
dc.citation.startPage255-
dc.citation.endPage282-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.subject.keywordPlusGLOBAL OPTIMIZATION-
dc.subject.keywordPlusFLOCKING-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusMODEL-
dc.identifier.urlhttps://link.springer.com/article/10.1007/s00211-021-01174-y?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > ERICA 수리데이터사이언스학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Doheon photo

Kim, Doheon
ERICA 소프트웨어융합대학 (ERICA 수리데이터사이언스학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE