Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Convergence of a first-order consensus-based global optimization algorithm

Full metadata record
DC Field Value Language
dc.contributor.authorHa, Seung-Yeal-
dc.contributor.authorJin, Shi-
dc.contributor.authorKim, Doheon-
dc.date.accessioned2023-08-16T07:43:44Z-
dc.date.available2023-08-16T07:43:44Z-
dc.date.issued2020-11-
dc.identifier.issn0218-2025-
dc.identifier.issn1793-6314-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/114177-
dc.description.abstractGlobal optimization of a non-convex objective function often appears in large-scale machine learning and artificial intelligence applications. Recently, consensus-based optimization (CBO) methods have been introduced as one of the gradient-free optimization methods. In this paper, we provide a convergence analysis for the first-order CBO method in [J. A. Carrillo, S. Jin, L. Li and Y. Zhu, A consensus-based global optimization method for high dimensional machine learning problems, https://arxiv.org/abs/1909.09249v1]. Prior to this work, the convergence study was carried out for CBO methods on corresponding mean-field limit, a Fokker-Planck equation, which does not imply the convergence of the CBO method per se. Based on the consensus estimate directly on the first-order CBO model, we provide a convergence analysis of the first-order CBO method [J. A. Carrillo, S. Jin, L. Li and Y. Zhu, A consensus-based global optimization method for high dimensional machine learning problems, https://arxiv.org/abs/1909.09249v1] without resorting to the corresponding mean-field model. Our convergence analysis consists of two steps. In the first step, we show that the CBO model exhibits a global consensus time asymptotically for any initial data, and in the second step, we provide a sufficient condition on system parameters - which is dimension independent - and initial data which guarantee that the converged consensus state lies in a small neighborhood of the global minimum almost surely. © 2020 World Scientific Publishing Company.-
dc.format.extent28-
dc.language영어-
dc.language.isoENG-
dc.publisherWorld Scientific Publishing Co-
dc.titleConvergence of a first-order consensus-based global optimization algorithm-
dc.typeArticle-
dc.publisher.location싱가폴-
dc.identifier.doi10.1142/S0218202520500463-
dc.identifier.scopusid2-s2.0-85095986316-
dc.identifier.wosid000599904200004-
dc.identifier.bibliographicCitationMathematical Models and Methods in Applied Sciences, v.30, no.12, pp 2417 - 2444-
dc.citation.titleMathematical Models and Methods in Applied Sciences-
dc.citation.volume30-
dc.citation.number12-
dc.citation.startPage2417-
dc.citation.endPage2444-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.subject.keywordPlusFLOCKING-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusMODEL-
dc.subject.keywordAuthorConsensus-based optimization-
dc.subject.keywordAuthorGibb's distribution-
dc.subject.keywordAuthorglobal optimization-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthorobjective function-
dc.identifier.urlhttps://www.worldscientific.com/doi/abs/10.1142/S0218202520500463-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > ERICA 수리데이터사이언스학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Doheon photo

Kim, Doheon
ERICA 소프트웨어융합대학 (ERICA 수리데이터사이언스학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE