Heterogeneous endogeneity
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ghosh, Pallab | - |
dc.contributor.author | Grier, Kevin | - |
dc.contributor.author | Kim, Jaeho | - |
dc.date.accessioned | 2023-08-16T07:44:21Z | - |
dc.date.available | 2023-08-16T07:44:21Z | - |
dc.date.issued | 2019-04 | - |
dc.identifier.issn | 0932-5026 | - |
dc.identifier.issn | 1613-9798 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/114200 | - |
dc.description.abstract | We define heterogeneous endogeneity as the case where a potentially endogenous regressor is endogenous for some sub-groups of the data but exogenous for other subgroups. We derive an estimator and test procedure based on the control function approach to deal with the phenomenon. We show that accounting for heterogeneous endogeneity can greatly increase the power of endogeneity tests and increase the precision of our estimator over traditional IV. While the gains get larger as the instrument gets weaker and as the relative size of the non-endogenous subgroup gets larger, we find efficiency gains even when the underlying instrument is very strong. We illustrate our approach with an example using data from Abaide et al. (Econometrica 70:91–117). © 2019, Springer-Verlag GmbH Germany, part of Springer Nature. | - |
dc.format.extent | 40 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Springer Verlag | - |
dc.title | Heterogeneous endogeneity | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1007/s00362-019-01116-9 | - |
dc.identifier.scopusid | 2-s2.0-85067238912 | - |
dc.identifier.wosid | 000630083300013 | - |
dc.identifier.bibliographicCitation | Statistical Papers, v.62, no.2, pp 847 - 886 | - |
dc.citation.title | Statistical Papers | - |
dc.citation.volume | 62 | - |
dc.citation.number | 2 | - |
dc.citation.startPage | 847 | - |
dc.citation.endPage | 886 | - |
dc.type.docType | 정기학술지(Article(Perspective Article포함)) | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Mathematics | - |
dc.relation.journalWebOfScienceCategory | Statistics & Probability | - |
dc.subject.keywordAuthor | Control function | - |
dc.subject.keywordAuthor | Heterogeneity | - |
dc.subject.keywordAuthor | Heterogeneous Endogeneity | - |
dc.subject.keywordAuthor | Instrumental variables | - |
dc.identifier.url | https://link.springer.com/article/10.1007/s00362-019-01116-9?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.