Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Prototype of Configurable Redfish Query Proxy Module

Full metadata record
DC Field Value Language
dc.contributor.authorPark,Chanyoung-
dc.contributor.authorJoe,Yoonsue-
dc.contributor.authorYoo,Myounghwan-
dc.contributor.authorLee,Dongeun-
dc.contributor.authorKang,Kyungtae-
dc.date.accessioned2023-09-04T05:35:28Z-
dc.date.available2023-09-04T05:35:28Z-
dc.date.issued2020-10-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/114646-
dc.description.abstractRedfish is a next-generation API standard for the management of data center infrastructures. This rich API can flexibly obtain data using a query string from the client side. However, this feature is optional and not fully supported by many services. We implemented a prototype Redfish query processing module on Nginx, a well-known open source web server. The Redfish query processing module can run with a proxy module and work with any server-side or client-side applications. Additionally, our prototype implementation can be configured to properly utilize queries, which are supported on a backend server, and improve performance. Our implementation was evaluated on an OpenBMC server and a mockup server and showed potential for performance improvement.-
dc.format.extent2-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE COMPUTER SOC-
dc.titlePrototype of Configurable Redfish Query Proxy Module-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/ICNP49622.2020.9259365-
dc.identifier.bibliographicCitation2020 IEEE 28th International Conference on Network Protocols (ICNP), pp 1 - 2-
dc.citation.title2020 IEEE 28th International Conference on Network Protocols (ICNP)-
dc.citation.startPage1-
dc.citation.endPage2-
dc.type.docTypeProceeding-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassother-
dc.subject.keywordAuthorredfish-
dc.subject.keywordAuthorquery-
dc.subject.keywordAuthorproxy-
dc.subject.keywordAuthorbmc-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/9259365?arnumber=9259365&SID=EBSCO:edseee-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > DEPARTMENT OF ARTIFICIAL INTELLIGENCE > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Kyung tae photo

Kang, Kyung tae
ERICA 소프트웨어융합대학 (DEPARTMENT OF ARTIFICIAL INTELLIGENCE)
Read more

Altmetrics

Total Views & Downloads

BROWSE