Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Simulation of the role of agglomerations in the tunneling conductivity of polymer/carbon nanotube piezoresistive strain sensors

Full metadata record
DC Field Value Language
dc.contributor.authorHaghgoo, Mojtaba-
dc.contributor.authorAnsari, Reza-
dc.contributor.authorHassanzadeh-Aghdam, Mohammad Kazem-
dc.contributor.authorJang, Sung-Hwan-
dc.contributor.authorNankali, Mohammad-
dc.date.accessioned2023-09-11T01:31:14Z-
dc.date.available2023-09-11T01:31:14Z-
dc.date.issued2023-10-
dc.identifier.issn0266-3538-
dc.identifier.issn1879-1050-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115123-
dc.description.abstractA 3D Monte Carlo method paired with a percolation model is carried out to predict the electrical resistivity and piezoresistive sensitivity of carbon nanotube (CNT)-polymer piezoresistive sensors. CNTs are randomly dispersed into the insulating layer of a polymer matrix having agglomerated morphologies in some parts. The electrical resistivity of nanocomposite with a defined agglomeration state is determined by considering the tunneling effect between each connected pair of CNTs. The influence of various parameters such as agglomeration radius, percentage, intrinsic properties and geometries of CNTs are investigated. A comparison was made between the analytical results and experimental data. Considering the tunneling behavior in the vicinity of the percolation transition, a good agreement is obtained between the analytical results and experimental data. Monte Carlo simulations indicated that the tunneling resistance with a random distribution of CNTs depends on the level of agglomeration. Results revealed that piezoresistive sensitivity was diminished by larger agglomerations. © 2023 Elsevier Ltd-
dc.format.extent9-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier Ltd-
dc.titleSimulation of the role of agglomerations in the tunneling conductivity of polymer/carbon nanotube piezoresistive strain sensors-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1016/j.compscitech.2023.110242-
dc.identifier.scopusid2-s2.0-85168800961-
dc.identifier.wosid001070515600001-
dc.identifier.bibliographicCitationComposites Science and Technology, v.243, pp 1 - 9-
dc.citation.titleComposites Science and Technology-
dc.citation.volume243-
dc.citation.startPage1-
dc.citation.endPage9-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryMaterials Science, Composites-
dc.subject.keywordPlusELECTRICAL-CONDUCTIVITY-
dc.subject.keywordPlusPERCOLATION-THRESHOLD-
dc.subject.keywordPlusCARBON NANOTUBES-
dc.subject.keywordPlusTENSILE MODULUS-
dc.subject.keywordPlusNANOCOMPOSITES-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusINTERPHASE-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordAuthorCNT-
dc.subject.keywordAuthorMonte Carlo method-
dc.subject.keywordAuthorPiezoresistivity-
dc.subject.keywordAuthorPolymer-
dc.subject.keywordAuthorTunneling conductivity-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0266353823003366?pes=vor-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jang, Sung Hwan photo

Jang, Sung Hwan
ERICA 공학대학 (DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE