Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Sorption-Enhanced Thin Film Composites with Metal-Organic Polyhedral Nanocages for CO2 Separation

Full metadata record
DC Field Value Language
dc.contributor.authorSohail, Muhammad-
dc.contributor.authorAn, Heseong-
dc.contributor.authorChoi, Wanuk-
dc.contributor.authorSingh, Jatinder-
dc.contributor.authorYim, Kanghoon-
dc.contributor.authorKim, Byung-Hyun-
dc.contributor.authorPark, Young Cheol-
dc.contributor.authorLee, Jong Suk-
dc.contributor.authorKim, Hyunuk-
dc.date.accessioned2023-09-11T01:32:16Z-
dc.date.available2023-09-11T01:32:16Z-
dc.date.issued2021-02-
dc.identifier.issn0376-7388-
dc.identifier.issn1873-3123-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115144-
dc.description.abstractThe atom transfer radical polymerization (ATRP)-based continuous assembly of polymers (CAP) is a promising approach for fabricating thin film composite (TFC) membranes for high flux. Here, we report the preparation of CO2-selective TFC mixed matrix membranes (MMMs) by incorporating different amounts of [Cu24(m-bdc)24(EG)3(DMF)12] (EG3-MOP) nanocages (e.g., 2.5, 5, and 10 wt%) as CO2-philic fillers in a poly(poly(ethylene glycol) dimethacrylate glycol) dimethacrylate (PEG9DMA) matrix via the ATRP-based CAP technique. The EG3-MOP nanocages are homogeneously distributed in the PEG9DMA matrix with a good compatibility between them at up to 5 wt% of EG3-MOP nanocages due to the hydrophilic interactions between the triethylene oxide tails of EG3-MOP and the PEG of the PEG9DMA matrix. Additionally, both CO2 permeance and CO2/N2 selectivity increased with increasing contents of EG3-MOP nanocages up to 5 wt% via a gradual increase in CO2 solubility because of the favorable interaction of both unsaturated Cu(II) sites and triethylene oxide in EG3-MOP with CO2. In particular, the EG3-MOP/PEG9DMA (5/95 wt/wt) TFC-MMM enhanced both CO2 permeance and CO2/N2 permselectivity relative to those of the pristine PEG9DMA membrane by 45 and 50%, respectively, attaining a CO2 permeance of 448 GPU and a CO2/N2 selectivity of 30. In addition, it exhibited a good CO2/N2 separation performance under equimolar mixed gas conditions at 35 °C, further supporting that our TFC-MMMs fabricated via the ATRP-based CAP technique are attractive for CO2 separation. © 2020 Elsevier B.V.-
dc.format.extent9-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleSorption-Enhanced Thin Film Composites with Metal-Organic Polyhedral Nanocages for CO2 Separation-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.memsci.2020.118826-
dc.identifier.scopusid2-s2.0-85093919779-
dc.identifier.wosid000609145500003-
dc.identifier.bibliographicCitationJournal of Membrane Science, v.620, pp 1 - 9-
dc.citation.titleJournal of Membrane Science-
dc.citation.volume620-
dc.citation.startPage1-
dc.citation.endPage9-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPolymer Science-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.subject.keywordPlusMIXED-MATRIX MEMBRANES-
dc.subject.keywordPlusPOLYMERIC MEMBRANES-
dc.subject.keywordPlusINTERFACIAL POLYMERIZATION-
dc.subject.keywordPlusGAS SORPTION-
dc.subject.keywordPlusENCAPSULATION-
dc.subject.keywordPlusPERMEABILITY-
dc.subject.keywordPlusPERMEATION-
dc.subject.keywordPlusSOLUBILITY-
dc.subject.keywordPlusFRAMEWORK-
dc.subject.keywordAuthorAtom transfer radical polymerization (ATRP)-
dc.subject.keywordAuthorCO2 separation-
dc.subject.keywordAuthorMetal-organic polyhedral nanocage-
dc.subject.keywordAuthorThin film composite mixed matrix membrane (TFC-MMM)-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0376738820314010?pes=vor-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Byung-Hyun photo

Kim, Byung-Hyun
ERICA 공학대학 (ERICA 에너지바이오학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE