First-Principles Based Machine-Learning Molecular Dynamics for Crystalline Polymers with Van der Waals Interactions
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hong, Sung Jun | - |
dc.contributor.author | Chun, Hoje | - |
dc.contributor.author | Lee, Jehyun | - |
dc.contributor.author | Kim, Byung-Hyun | - |
dc.contributor.author | Seo, Min Ho | - |
dc.contributor.author | Kang, Joonhee | - |
dc.contributor.author | Han, Byungchan | - |
dc.date.accessioned | 2023-09-11T01:32:24Z | - |
dc.date.available | 2023-09-11T01:32:24Z | - |
dc.date.issued | 2021-07 | - |
dc.identifier.issn | 1948-7185 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115146 | - |
dc.description.abstract | Machine-learning (ML) techniques have drawn an ever-increasing focus as they enable high-throughput screening and multiscale prediction of material properties. Especially, ML force fields (FFs) of quantum mechanical accuracy are expected to play a central role for the purpose. The construction of ML-FFs for polymers is, however, still in its infancy due to the formidable configurational space of its composing atoms. Here, we demonstrate the effective development of ML-FFs using kernel functions and a Gaussian process for an organic polymer, polytetrafluoroethylene (PTFE), with a data set acquired by first-principles calculations andab initiomolecular dynamics (AIMD) simulations. Even though the training data set is sampled only with short PTFE chains, structures of longer chains optimized by our ML-FF show an excellent consistency with density functional theory calculations. Furthermore, when integrated with molecular dynamics simulations, the ML-FF successfully describes various physical properties of a PTFE bundle, such as a density, melting temperature, coefficient of thermal expansion, and Young’s modulus. © 2021 American Chemical Society | - |
dc.format.extent | 7 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | American Chemical Society | - |
dc.title | First-Principles Based Machine-Learning Molecular Dynamics for Crystalline Polymers with Van der Waals Interactions | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1021/acs.jpclett.1c01140 | - |
dc.identifier.scopusid | 2-s2.0-85109634355 | - |
dc.identifier.wosid | 000670642600025 | - |
dc.identifier.bibliographicCitation | The Journal of Physical Chemistry Letters, v.12, no.25, pp 6000 - 6006 | - |
dc.citation.title | The Journal of Physical Chemistry Letters | - |
dc.citation.volume | 12 | - |
dc.citation.number | 25 | - |
dc.citation.startPage | 6000 | - |
dc.citation.endPage | 6006 | - |
dc.type.docType | 정기 학술지(letter(letters to the editor)) | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Atomic, Molecular & Chemical | - |
dc.subject.keywordPlus | FORCE-FIELD | - |
dc.subject.keywordPlus | SIMULATIONS | - |
dc.subject.keywordPlus | POLYTETRAFLUOROETHYLENE | - |
dc.identifier.url | https://pubs.acs.org/doi/10.1021/acs.jpclett.1c01140 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.