Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Reduced Crouzeix–Raviart Immersed Finite Element Method for Elasticity Problems with Interfaces

Full metadata record
DC Field Value Language
dc.contributor.authorJo, Gwanghyun-
dc.contributor.authorKwak, Do Young-
dc.date.accessioned2023-09-11T01:33:29Z-
dc.date.available2023-09-11T01:33:29Z-
dc.date.issued2020-07-
dc.identifier.issn1609-4840-
dc.identifier.issn1609-9389-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115170-
dc.description.abstractThe purpose of this paper is to develop a reduced Crouzeix-Raviart immersed finite element method (RCRIFEM) for two-dimensional elasticity problems with interface, which is based on the Kouhia-Stenberg finite element method (Kouhia et al. 1995) and Crouzeix-Raviart IFEM (CRIFEM) (Kwak et al. 2017). We use a P 1 P1 -conforming like element for one of the components of the displacement vector, and a P 1 P1 -nonconforming like element for the other component. The number of degrees of freedom of our scheme is reduced to two thirds of CRIFEM. Furthermore, we can choose penalty parameters independent of the Poisson ratio. One of the penalty parameters depends on Lamé's second constant μ, and the other penalty parameter is independent of both μ and λ. We prove the optimal order error estimates in piecewise H 1 H1 -norm, which is independent of the Poisson ratio. Numerical experiments show optimal order of convergence both in L 2 L2 and piecewise H 1 H1 -norms for all problems including nearly incompressible cases. © 2020 Walter de Gruyter GmbH, Berlin/Boston 2020.-
dc.format.extent16-
dc.language영어-
dc.language.isoENG-
dc.publisherWalter de Gruyter GmbH-
dc.titleA Reduced Crouzeix–Raviart Immersed Finite Element Method for Elasticity Problems with Interfaces-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1515/cmam-2019-0046-
dc.identifier.scopusid2-s2.0-85072646098-
dc.identifier.wosid000544517400006-
dc.identifier.bibliographicCitationComputational Methods in Applied Mathematics, v.20, no.3, pp 501 - 516-
dc.citation.titleComputational Methods in Applied Mathematics-
dc.citation.volume20-
dc.citation.number3-
dc.citation.startPage501-
dc.citation.endPage516-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.subject.keywordPlusINCOMPRESSIBLE ELASTICITY-
dc.subject.keywordPlusDISCONTINUOUS GALERKIN-
dc.subject.keywordPlusCRACK-GROWTH-
dc.subject.keywordPlusEQUATIONS-
dc.subject.keywordAuthorElasticity Equation With Interface-
dc.subject.keywordAuthorImmersed Finite Element Method-
dc.subject.keywordAuthorKorn's Inequality-
dc.subject.keywordAuthorKouhia-Stenberg Element-
dc.subject.keywordAuthorLocking Free-
dc.subject.keywordAuthorNearly Incompressible-
dc.identifier.urlhttps://www.degruyter.com/document/doi/10.1515/cmam-2019-0046/html-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > ERICA 수리데이터사이언스학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jo, Gwanghyun photo

Jo, Gwanghyun
ERICA 소프트웨어융합대학 (ERICA 수리데이터사이언스학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE