Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Semi-Uniform Multigrid Algorithm for Solving Elliptic Interface Problems

Full metadata record
DC Field Value Language
dc.contributor.authorJo, Gwanghyun-
dc.contributor.authorKwak, Do Young-
dc.date.accessioned2023-09-11T01:33:38Z-
dc.date.available2023-09-11T01:33:38Z-
dc.date.issued2021-01-
dc.identifier.issn1609-4840-
dc.identifier.issn1609-9389-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115174-
dc.description.abstractWe introduce a new geometric multigrid algorithm to solve elliptic interface problems. First we discretize the problems by the usual P1-conforming finite element methods on a semi-uniform grid which is obtained by refining a uniform grid. To solve the algebraic system, we adopt subspace correction methods for which we use uniform grids as the auxiliary spaces. To enhance the efficiency of the algorithms, we define a new transfer operator between a uniform grid and a semi-uniform grid so that the transferred functions satisfy the flux continuity along the interface. In the auxiliary space, the system is solved by the usual multigrid algorithm with a similarly modified prolongation operator. We show W-cycle convergence for the proposed multigrid algorithm. We demonstrate the performance of our multigrid algorithm for problems having various ratios of parameters. We observe that the computational complexity of our algorithms are robust for all problems we tested. © 2021 De Gruyter. All rights reserved.-
dc.format.extent17-
dc.language영어-
dc.language.isoENG-
dc.publisherWalter de Gruyter GmbH-
dc.titleA Semi-Uniform Multigrid Algorithm for Solving Elliptic Interface Problems-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1515/cmam-2020-0039-
dc.identifier.scopusid2-s2.0-85092703961-
dc.identifier.wosid000604996300008-
dc.identifier.bibliographicCitationComputational Methods in Applied Mathematics, v.21, no.1, pp 127 - 143-
dc.citation.titleComputational Methods in Applied Mathematics-
dc.citation.volume21-
dc.citation.number1-
dc.citation.startPage127-
dc.citation.endPage143-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.subject.keywordPlusFINITE-ELEMENT-METHOD-
dc.subject.keywordPlusSPACE-
dc.subject.keywordPlusCONVERGENCE-
dc.subject.keywordAuthorElliptic Interface Problem-
dc.subject.keywordAuthorGeometric Multigrid-
dc.subject.keywordAuthorSemi-Uniform Grid-
dc.subject.keywordAuthorW-Cycle Convergence-
dc.identifier.urlhttps://www.degruyter.com/document/doi/10.1515/cmam-2020-0039/html-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > ERICA 수리데이터사이언스학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jo, Gwanghyun photo

Jo, Gwanghyun
ERICA 소프트웨어융합대학 (ERICA 수리데이터사이언스학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE